참고문헌
- Yu FX, Zhao B and Guan KL (2015) Hippo Pathway in Organ Size Control. Tissue Homeostasis, and Cancer. Cell 163, 811-828 https://doi.org/10.1016/j.cell.2015.10.044
- Harvey KF, Pfleger CM and Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457-467 https://doi.org/10.1016/S0092-8674(03)00557-9
- Jia J, Zhang W, Wang B, Trinko R and Jiang J (2003) The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17, 2514-2519 https://doi.org/10.1101/gad.1134003
- Justice RW, Zilian O, Woods DF, Noll M and Bryant PJ (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9, 534-546 https://doi.org/10.1101/gad.9.5.534
- Pantalacci S, Tapon N and Leopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5, 921-927 https://doi.org/10.1038/ncb1051
- Xu T, Wang W, Zhang S, Stewart RA and Yu W (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053-1063
- Udan RS, Kango-Singh M, Nolo R, Tao C and Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5, 914-920 https://doi.org/10.1038/ncb1050
- Wu S, Huang J, Dong J and Pan D (2003) Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445-456 https://doi.org/10.1016/S0092-8674(03)00549-X
- Kango-Singh M, Nolo R, Tao C et al (2002) Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719-5730 https://doi.org/10.1242/dev.00168
- Tapon N, Harvey KF, Bell DW et al (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467-478 https://doi.org/10.1016/S0092-8674(02)00824-3
- Lai ZC, Wei X, Shimizu T et al (2005) Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120, 675-685 https://doi.org/10.1016/j.cell.2004.12.036
- Huang J, Wu S, Barrera J, Matthews K and Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421-434 https://doi.org/10.1016/j.cell.2005.06.007
- Dong J, Feldmann G, Huang J et al (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133 https://doi.org/10.1016/j.cell.2007.07.019
- Staley BK and Irvine KD (2012) Hippo signaling in Drosophila: recent advances and insights. Dev Dyn 241, 3-15 https://doi.org/10.1002/dvdy.22723
- Oh H and Irvine KD (2008) In vivo regulation of Yorkie phosphorylation and localization. Development 135, 1081-1088 https://doi.org/10.1242/dev.015255
- Ren F, Zhang L and Jiang J (2010) Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev Biol 337, 303-312 https://doi.org/10.1016/j.ydbio.2009.10.046
- Mahoney WM Jr, Hong JH, Yaffe MB and Farrance IK (2005) The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem J 388, 217-225 https://doi.org/10.1042/BJ20041434
- Vassilev A, Kaneko KJ, Shu H, Zhao Y and DePamphilis ML (2001) TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15, 1229-1241 https://doi.org/10.1101/gad.888601
- Zhao B, Wei X, Li W et al (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747-2761 https://doi.org/10.1101/gad.1602907
- Sudol M (1994) Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9, 2145-2152
- Hao Y, Chun A, Cheung K, Rashidi B and Yang X (2008) Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283, 5496-5509 https://doi.org/10.1074/jbc.M709037200
- Oka T, Mazack V and Sudol M (2008) Mst2 and Lats kinases regulate apoptotic function of Yes kinaseassociated protein (YAP). J Biol Chem 283, 27534-27546 https://doi.org/10.1074/jbc.M804380200
- Lei QY, Zhang H, Zhao B et al (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol Cell Biol 28, 2426-2436 https://doi.org/10.1128/MCB.01874-07
- Kanai F, Marignani PA, Sarbassova D et al (2000) TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19, 6778-6791 https://doi.org/10.1093/emboj/19.24.6778
- Liu CY, Zha ZY, Zhou X et al (2010) The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 285, 37159-37169 https://doi.org/10.1074/jbc.M110.152942
- Zhao B, Ye X, Yu J et al (2008) TEAD mediates YAPdependent gene induction and growth control. Genes Dev 22, 1962-1971 https://doi.org/10.1101/gad.1664408
- Zhang H, Liu CY, Zha ZY et al (2009) TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem 284, 13355-13362 https://doi.org/10.1074/jbc.M900843200
- Zhu C, Li L and Zhao B (2015) The regulation and function of YAP transcription co-activator. Acta Biochim Biophys Sin (Shanghai) 47, 16-28 https://doi.org/10.1093/abbs/gmu110
- Zanconato F, Cordenonsi M and Piccolo S (2016) YAP/TAZ at the roots of cancer. Cancer Cell 29, 783-803 https://doi.org/10.1016/j.ccell.2016.05.005
- Ota M and Sasaki H (2008) Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135, 4059-4069 https://doi.org/10.1242/dev.027151
- Nishioka N, Inoue K, Adachi K et al (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16, 398-410 https://doi.org/10.1016/j.devcel.2009.02.003
- Gumbiner BM and Kim NG (2014) The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci 127, 709-717 https://doi.org/10.1242/jcs.140103
- Yang CC, Graves HK, Moya IM et al (2015) Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules. Proc Natl Acad Sci U S A 112, 1785-1790 https://doi.org/10.1073/pnas.1420850112
- Driscoll TP, Cosgrove BD, Heo SJ, Shurden ZE and Mauck RL (2015) Cytoskeletal to Nuclear Strain Transfer Regulates YAP Signaling in Mesenchymal Stem Cells. Biophys J 108, 2783-2793 https://doi.org/10.1016/j.bpj.2015.05.010
- Aragona M, Panciera T, Manfrin A et al (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047-1059 https://doi.org/10.1016/j.cell.2013.07.042
- Dupont S, Morsut L, Aragona M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183 https://doi.org/10.1038/nature10137
- Sun Y, Yong KM, Villa-Diaz LG et al (2014) Hippo/YAPmediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat Mater 13, 599-604 https://doi.org/10.1038/nmat3945
- Wada K, Itoga K, Okano T, Yonemura S and Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907-3914 https://doi.org/10.1242/dev.070987
- Sansores-Garcia L, Bossuyt W, Wada K et al (2011) Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 30, 2325-2335 https://doi.org/10.1038/emboj.2011.157
- Fernandez BG, Gaspar P, Bras-Pereira C, Jezowska B, Rebelo SR and Janody F (2011) Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 138, 2337-2346 https://doi.org/10.1242/dev.063545
- Ikeda S, Cunningham LA, Boggess D et al (2003) Aberrant actin cytoskeleton leads to accelerated proliferation of corneal epithelial cells in mice deficient for destrin (actin depolymerizing factor). Hum Mol Genet 12, 1029-1037 https://doi.org/10.1093/hmg/ddg112
- Zhao B, Li L, Wang L, Wang CY, Yu J and Guan KL (2012) Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26, 54-68 https://doi.org/10.1101/gad.173435.111
- Codelia VA, Sun G and Irvine KD (2014) Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Curr Biol 24, 2012-2017 https://doi.org/10.1016/j.cub.2014.07.034
- Calvo F, Ege N, Grande-Garcia A et al (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancerassociated fibroblasts. Nat Cell Biol 15, 637-646 https://doi.org/10.1038/ncb2756
- Chan SW, Lim CJ, Guo K et al (2008) A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68, 2592-2598 https://doi.org/10.1158/0008-5472.CAN-07-2696
- Cordenonsi M, Zanconato F, Azzolin L et al (2011) The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759-772 https://doi.org/10.1016/j.cell.2011.09.048
- Kim KM, Choi YJ, Hwang JH et al (2014) Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS One 9, e92427 https://doi.org/10.1371/journal.pone.0092427
- Wang KC, Yeh YT, Nguyen P et al (2016) Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc Natl Acad Sci U S A 113, 11525-11530 https://doi.org/10.1073/pnas.1613121113
- Sabine A, Bovay E, Demir CS et al (2015) FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J Clin Invest 125, 3861-3877 https://doi.org/10.1172/JCI80454
- Miller E, Yang J, DeRan M et al (2012) Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem Biol 19, 955-962 https://doi.org/10.1016/j.chembiol.2012.07.005
- Yu FX, Zhao B, Panupinthu N et al (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791 https://doi.org/10.1016/j.cell.2012.06.037
- Cai H and Xu Y (2013) The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun Signal 11, 31 https://doi.org/10.1186/1478-811X-11-31
- Mo JS, Yu FX, Gong R, Brown JH and Guan KL (2012) Regulation of the Hippo-YAP pathway by proteaseactivated receptors (PARs). Genes Dev 26, 2138-2143 https://doi.org/10.1101/gad.197582.112
- Lappano R and Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10, 47-60 https://doi.org/10.1038/nrd3320
- Yu FX, Zhang Y, Park HW et al (2013) Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 27, 1223-1232 https://doi.org/10.1101/gad.219402.113
- Zhu H, Cheng X, Niu X et al (2015) Proton-sensing GPCR-YAP Signalling Promotes Cell Proliferation and Survival. Int J Biol Sci 11, 1181-1189 https://doi.org/10.7150/ijbs.12500
- Zhu H, Guo S, Zhang Y et al (2016) Proton-sensing GPCR-YAP Signalling Promotes Cancer-associated Fibroblast Activation of Mesenchymal Stem Cells. Int J Biol Sci 12, 389-396 https://doi.org/10.7150/ijbs.13688
- Zhou X, Wang S, Wang Z et al (2015) Estrogen regulates Hippo signaling via GPER in breast cancer. J Clin Invest 125, 2123-2135 https://doi.org/10.1172/JCI79573
- Feng X, Liu P, Zhou X et al (2016) Thromboxane A2 Activates YAP/TAZ Protein to Induce Vascular Smooth Muscle Cell Proliferation and Migration. J Biol Chem 291, 18947-18958 https://doi.org/10.1074/jbc.M116.739722
- Wennmann DO, Vollenbroker B, Eckart AK et al (2014) The Hippo pathway is controlled by Angiotensin II signaling and its reactivation induces apoptosis in podocytes. Cell Death Dis 5, e1519 https://doi.org/10.1038/cddis.2014.476
- Chen D, Sun Y, Wei Y et al (2012) LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 18, 1511-1517 https://doi.org/10.1038/nm.2940
- Fan R, Kim NG and Gumbiner BM (2013) Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci U S A 110, 2569-2574 https://doi.org/10.1073/pnas.1216462110
- Azzolin L, Panciera T, Soligo S et al (2014) YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell 158, 157-170 https://doi.org/10.1016/j.cell.2014.06.013
- Barry ER, Morikawa T, Butler BL et al (2013) Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106-110
- Heallen T, Zhang M, Wang J et al (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458-461 https://doi.org/10.1126/science.1199010
- Rosenbluh J, Nijhawan D, Cox AG et al (2012) beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151, 1457-1473 https://doi.org/10.1016/j.cell.2012.11.026
- Varelas X, Miller BW, Sopko R et al (2010) The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell 18, 579-591 https://doi.org/10.1016/j.devcel.2010.03.007
- Park HW, Kim YC, Yu B et al (2015) Alternative Wnt Signaling Activates YAP/TAZ. Cell 162, 780-794 https://doi.org/10.1016/j.cell.2015.07.013
- Azzolin L, Zanconato F, Bresolin S et al (2012) Role of TAZ as mediator of Wnt signaling. Cell 151, 1443-1456 https://doi.org/10.1016/j.cell.2012.11.027
- Alarcon C, Zaromytidou AI, Xi Q et al (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139, 757-769 https://doi.org/10.1016/j.cell.2009.09.035
- Fujii M, Toyoda T, Nakanishi H et al (2012) TGF-beta synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth. J Exp Med 209, 479-494 https://doi.org/10.1084/jem.20111653
- Varelas X, Sakuma R, Samavarchi-Tehrani P et al (2008) TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol 10, 837-848 https://doi.org/10.1038/ncb1748
- Feng X, Degese MS, Iglesias-Bartolome R et al (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25, 831-845 https://doi.org/10.1016/j.ccr.2014.04.016
- Liu G, Yu FX, Kim YC et al (2015) Kaposi sarcomaassociated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene 34, 3536-3546 https://doi.org/10.1038/onc.2014.281
- Yu FX, Luo J, Mo JS et al (2014) Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25, 822-830 https://doi.org/10.1016/j.ccr.2014.04.017
- DeRan M, Yang J, Shen CH et al (2014) Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep 9, 495-503 https://doi.org/10.1016/j.celrep.2014.09.036
- Mo JS, Meng Z, Kim YC et al (2015) Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 17, 500-510 https://doi.org/10.1038/ncb3111
- Wang W, Xiao ZD, Li X et al (2015) AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol 17, 490-499 https://doi.org/10.1038/ncb3113
- Mohseni M, Sun J, Lau A et al (2014) A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol 16, 108-117 https://doi.org/10.1038/ncb2884
- Nguyen HB, Babcock JT, Wells CD and Quilliam LA (2013) LKB1 tumor suppressor regulates AMP kinase/mTORindependent cell growth and proliferation via the phosphorylation of Yap. Oncogene 32, 4100-4109 https://doi.org/10.1038/onc.2012.431
- Gailite I, Aerne BL and Tapon N (2015) Differential control of Yorkie activity by LKB1/AMPK and the Hippo/Warts cascade in the central nervous system. Proc Natl Acad Sci U S A 112, E5169-5178 https://doi.org/10.1073/pnas.1505512112
- Park YY, Sohn BH, Johnson RL et al (2016) Yes-associated protein 1 and transcriptional coactivator with PDZbinding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma. Hepatology 63, 159-172 https://doi.org/10.1002/hep.28223
- Hansen CG, Ng YL, Lam WL, Plouffe SW and Guan KL (2015) The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res 25, 1299-1313 https://doi.org/10.1038/cr.2015.140
- Artinian N, Cloninger C, Holmes B, Benavides-Serrato A, Bashir T and Gera J (2015) Phosphorylation of the Hippo Pathway Component AMOTL2 by the mTORC2 Kinase Promotes YAP Signaling, Resulting in Enhanced Glioblastoma Growth and Invasiveness. J Biol Chem 290, 19387-19401 https://doi.org/10.1074/jbc.M115.656587
- Sciarretta S, Zhai P, Maejima Y et al (2015) mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Rep 11, 125-136 https://doi.org/10.1016/j.celrep.2015.03.010
- Liang N, Zhang C, Dill P et al (2014) Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med 211, 2249-2263 https://doi.org/10.1084/jem.20140341
- Parker J and Struhl G (2015) Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie. PLoS Biol 13, e1002274 https://doi.org/10.1371/journal.pbio.1002274
- Tumaneng K, Schlegelmilch K, Russell RC et al (2012) YAP mediates crosstalk between the Hippo and PI(3)KTOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14, 1322-1329 https://doi.org/10.1038/ncb2615
- Cinar B, Collak FK, Lopez D et al (2011) MST1 is a multifunctional caspase-independent inhibitor of androgenic signaling. Cancer Res 71, 4303-4313 https://doi.org/10.1158/0008-5472.CAN-10-4532
- Collak FK, Yagiz K, Luthringer DJ, Erkaya B and Cinar B (2012) Threonine-120 phosphorylation regulated by phosphoinositide-3-kinase/Akt and mammalian target of rapamycin pathway signaling limits the antitumor activity of mammalian sterile 20-like kinase 1. J Biol Chem 287, 23698-23709 https://doi.org/10.1074/jbc.M112.358713
- Garcia-Martinez JM and Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416, 375-385 https://doi.org/10.1042/BJ20081668
- Ikenoue T, Inoki K, Yang Q, Zhou X and Guan KL (2008) Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27, 1919-1931 https://doi.org/10.1038/emboj.2008.119
- Facchinetti V, Ouyang W, Wei H et al (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27, 1932-1943 https://doi.org/10.1038/emboj.2008.120
- Sorrentino G, Ruggeri N, Specchia V et al (2014) Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 16, 357-366 https://doi.org/10.1038/ncb2936
- Wehr MC, Holder MV, Gailite I et al (2013) Salt-inducible kinases regulate growth through the Hippo signalling pathway in Drosophila. Nat Cell Biol 15, 61-71 https://doi.org/10.1038/ncb2658
피인용 문헌
- AMOT130 linking F-actin to YAP is involved in intervertebral disc degeneration pp.09607722, 2018, https://doi.org/10.1111/cpr.12492
- The history and regulatory mechanism of the Hippo pathway vol.51, pp.3, 2018, https://doi.org/10.5483/BMBRep.2018.51.3.022