DOI QR코드

DOI QR Code

The Doping Concentration and Physical Properties Measurement of Silicon Wafer Using Terahertz Wave

테라헤르츠파를 이용한 실리콘 웨이퍼의 도핑 정도와 물리적 특성 측정에 관한 연구

  • 박성현 (한양대학교 융합기계공학과) ;
  • 오경환 (한양대학교 융합기계공학과) ;
  • 김학성 (한양대학교 융합기계공학과)
  • Received : 2016.09.07
  • Accepted : 2017.02.03
  • Published : 2017.02.28

Abstract

In this study, a terahertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of $30^{\circ}$ were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from $10^{14}$ to $10^{18}$ in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer.

본 논문에서는 테라헤르츠파 시간분광영상시스템을 이용하여 도핑된 실리콘 웨이퍼의 물리적 특성을 측정하는 것에 관한 연구를 진행하였다. 투과모드와 $30^{\circ}$의 입사각을 가진 반사모드를 이용하여 측정하였으며 실리콘 웨이퍼의 도핑 정도는 N-type과 P-type 모두에서 $10^{14}$에서 $10^{18}$까지 다양하게 준비하였다. 그 결과, 도핑 정도와 테라헤르츠파와의 상관관계를 찾았으며 이를 이용하면 모든 경우에 대한 도핑된 실리콘 웨이퍼의 도핑 정도를 확인할 수 있다. 또한, 각 도핑된 실리콘 웨이퍼의 도핑된 두께, 굴절률, 유전율을 테라헤르츠 시간영역 파형분석을 통하여 계산할 수 있었다. 따라서, 테라헤르츠 시간분광영상화 기술은 도핑된 실리콘 웨이퍼의 굴절률과 유전율과 같은 물리적 특성뿐만 아니라 도핑 정도를 측정할 수 있는 유용한 기술이 될 것으로 기대된다.

Keywords

References

  1. T. Probst, S. Sommer, A. Soltani, E. Kraus, B. Baudrit, G. Town and M. Koch, "Monitoring the polymerization of two-component epoxy adhesives using a terahertz time domain reflection system," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 36(6), pp. 569-577 (2015) https://doi.org/10.1007/s10762-015-0155-7
  2. N. Palka, R. Panowicz, F. Ospald and R. Beigang, "3D non-destructive imaging of punctures in polyethylene composite armor by THz time domain spectroscopy," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 36(8), pp. 770-788 (2015) https://doi.org/10.1007/s10762-015-0174-4
  3. J. Zhou, X. Rao, S. Tu, L. Duan and X. Chen, "In temperature and doping dependence of the optical properties of silicon at terahertz frequencies," Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), pp. 1-3 (2015)
  4. A. V. Andrianov, A. N. Aleshin, A. K. Khripunov and V. N. Trukhin, "Terahertz properties of bacterial cellulose films and its composite with conducting polymer PEDOT/PSS," Synthetic Metals, Vol. 205, pp. 201-205 (2015) https://doi.org/10.1016/j.synthmet.2015.04.016
  5. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications-explosives, weapons and drugs", Semicond Sci Tech, Vol. 20(7), S266 (2005) https://doi.org/10.1088/0268-1242/20/7/018
  6. R. Appleby and H. B. Wallace, "Stand off detection of weapons and contraband in the 100 GHz to 1 THz region," IEEE Transactions on Antennas and Propagation, Vol. 55(11), pp. 2944-2956 (2007) https://doi.org/10.1109/TAP.2007.908543
  7. R. Woodward, V. Wallace, D. Arnone, E. Linfield and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," Journal of Biological Physics, Vol. 29(2-3), pp. 257-259 (2003) https://doi.org/10.1023/A:1024409329416
  8. F. Wahaia, G. Valusis, L. M. Bernardo, A. Almeida, J. A. Moreira, P. C. Lopes, J. Macutkevic, I. Kasalynas, D. Seliuta and R. Adomavicius, "Detection of colon cancer by terahertz techniques," Journal of Molecular Structure, Vo1. 1006(1), pp. 77-82 (2011)
  9. S.-H Park, J.-W Jang and H.-S. Kim, "Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy," Journal of Micromechanics and Microengineering, Vol. 25(9), 095007 (2015) https://doi.org/10.1088/0960-1317/25/9/095007
  10. T. Nagashima and M. Hangyo, "Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry," Applied Physics Letters, Vol. 79(24), pp. 3917-3919 (2001) https://doi.org/10.1063/1.1426258
  11. T. Arnold, W. Muehleisen, J. Schicker and C. Hirschl, "In inspection of mechanical and electrical properties of silicon wafers using terahertz tomography and spectroscopy", SPIE Sensing Technology+ Applications, pp. 94830W- 94830W-6 (2015)
  12. C. Richter and C.-Y. Jen, "Doping profile measurement using terahertz time domain spectroscopy (THz-TDS)," US Patent 20,160, 139,044 (2016)
  13. T.-I. Jeon and D. Grischkowsky, "Nature of conduction in doped silicon," Physical Review Letters, Vol. 78(6), pp. 1106-1109 (1997) https://doi.org/10.1103/PhysRevLett.78.1106
  14. M. Van Exter and D. Grischkowsky, "Optical and electronic properties of doped silicon from 0.1 to 2 THz," Applied Physics Letters, Vol. 56(17), pp. 1694-1696 (1990) https://doi.org/10.1063/1.103120
  15. T. Zedler, A. Nikanorov and B. Nacke, "In investigation of relative magnetic permeability as input data for numerical simulation of induction surface hardening," Proceedings of the International Scientific Colloquium, Modelling for Electromagnetic Processing, pp. 26-29 (2008)
  16. A. Cansiz, "Static and dynamic analysis of a diamagnetic bearing system," Journal of Applied Physics, Vol. 103(3), 034510 (2008) https://doi.org/10.1063/1.2841699
  17. K. Young and H. Frederikse, "Compilation of the static dielectric constant of inorganic solids", Journal of Physical and Chemical Reference Data, Vol. 2(2), pp. 313-410 (1973) https://doi.org/10.1063/1.3253121