Abstract
Purpose: High energy requirement and long cooking time are limiting consumption of pigeon pea (Cajanus cajan), a nutritious food. This study was performed to estimate energy and time demand by different methods of cooking pigeon pea. Methods: Pigeon pea (150 g) was soaked in 2.0 L of water at ambient temperature ($29{\pm} 2^{\circ}C$) to determine hydration behavior. Cooking experiments were conducted using aluminum and pressure-cooking pots. Efficiency of cooking was evaluated using four types of cooking appliances (kerosene, liquefied petroleum gas (LPG), electric, and charcoal stoves). Normal (continuous heating until the food was satisfactorily cooked) and control (controlling the energy input to closely match the actual energy required) cooking were conducted. Energy requirement and duration of cooking were determined using standard procedures. Results: Soaking increased moisture content from 11.99 to 30.01% in 90 min, while water absorption rate decreased with soaking duration. In cooking 150 g of pigeon pea using kerosene stove, presoaked normal pressure-pot cooking method consumed the least energy (10 800 kJ) and time (205 min), while unsoaked normal cooking consumed the highest energy (18 450 kJ) and time (336 min). Using LPG stove, unsoaked normal cooking method required the highest energy (52 470 kJ), while presoaked control pressure-pot required the least energy (14 405 kJ). For electric stove, the lowest energy (15 560 kJ) and shortest duration (105 min) were recorded during control cooking of presoaked sample in the pressure-pot. Conclusions: Control cooking was not practicable using charcoal stove. Generally, kerosene stove consumed the least energy, while electric stove was found to have the shortest duration of cooking.