References
- Park JM, Park SY, Wu HG, Kim JI. Commissioning Experience of Tri-Cobalt-60 MRI-guided Radiat ion Therapy System. Prog Med Phys. 2015;26:193-200. https://doi.org/10.14316/pmp.2015.26.4.193
- Stam MK et al. Kidney motion during free breathing and breath hold for MR-guided radiotherapy. Phys Med Biol. 2013;58:2235-45. https://doi.org/10.1088/0031-9155/58/7/2235
- Seierstad T et al. MR-guided simultaneous integrated boost in preoperative radiotherapy of locally advanced rectal cancer following neoadjuvant chemotherapy. Radiother Oncol. 2009;93:279-84. https://doi.org/10.1016/j.radonc.2009.08.046
- Dawson LA, Jaffray DA. Advances in Image-Guided Radiation Therapy. J Clin Oncol. 2007;25:938-46. https://doi.org/10.1200/JCO.2006.09.9515
- Court L, Rosen I, Mohan R, Dong L. Evaluat ion of mechanical precision and alignment uncertainties for an integrated CT/LINAC system. Med Phys. 2003;30:1198-210. https://doi.org/10.1118/1.1573792
- Oldham M et al. Cone-beam-CT guided radiation therapy A model for on-line application. Radiother Oncol. 2005;75:271-8.
- Hansen EK et al. Image-guided radiotherapy using megavoltage cone-beam computed tomography for treatment of paraspinous tumors in the presence of orthopedic hardware. Int J Radiat Oncol Biol Phys. 2006;66:323-6. https://doi.org/10.1016/j.ijrobp.2006.05.038
- Mohan DS, Kupelian PA, Willoughby TR. Short-course intensity-modulated radiotherapy for localized prostate cancer with daily transabdominal ultrasound localization of the prostate gland. Int J Radiat Oncol Biol Phys. 2000;46:575-80. https://doi.org/10.1016/S0360-3016(99)00454-X
- Choi CH et al. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. Br J Radiol. 2017;90:20160652. https://doi.org/10.1259/bjr.20160652
- Ling CC, Yorke E, Fuks Z. From IMRT to IGRT: frontierland or neverland? Radiother Oncol. 2006;78:119-22. https://doi.org/10.1016/j.radonc.2005.12.005
- Tejinder Kataria SG. Image Guided Radiation Therapy. J Nucl Med Radiat Ther. 2014;5.
- Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol. 2014;24:196-9. https://doi.org/10.1016/j.semradonc.2014.02.008
- Wooten HO et al. Benchmark IMRT evaluation of a Co-60 MRI-guided radiation therapy system. Radiother Oncol. 2015;114:402-5. https://doi.org/10.1016/j.radonc.2015.01.015
- Kashani R et al. Commissioning and Clinical Implementation of the First Online Adaptive MR Image Guided Radiation Therapy Program. Int J Radiat Oncol Biol Phys. 2015;93:S18-9.
- Park JM, Park SY, Kim JI, Kang HC, Choi CH. A comparison of treatment plan quality between Tri-Co-60 intensity modulated radiation therapy and volumetric modulated arc therapy for cervical cancer. Phys Med. 2017;40:11-6. https://doi.org/10.1016/j.ejmp.2017.06.018
- Park JM et al. Treatment plan comparison between Tri-Co-60 magnetic-resonance image-guided radiation therapy and volumetric modulated arc therapy for prostate cancer. Oncotarget. 2017;8:91174-84.
- Park JM et al. A comparative planning study for lung SABR between tri-Co-60 magnetic resonance image guided radiation therapy system and volumetric modulated arc therapy. Radiother Oncol. 2016;120:279-85. https://doi.org/10.1016/j.radonc.2016.06.013
- Almond PR et al. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26:1847-70. https://doi.org/10.1118/1.598691
- McEwen M et al. Addendum to the AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon beams. Med Phys. 2014;41:041501-1. https://doi.org/10.1118/1.4866223
- Green O, Goddu S, Mutic S. SU-E-T-352: Commissioning and Quality Assurance of the First Commercial Hybrid MRI-IMRT System. Med Phys. 2012;39:3785.
- Goddu S, Green O, Mut ic S. WE-G-BRB-08: TG-51 Calibration of First Commercial MRI-Guided IMRT System in the Presence of 0.35 Tesla Magnetic Field. Med Phys. 2012;39:3968.
- Day M, EGA A Central axis depth dose data for use in radiotherapy. A survey of depth doses and related data measured in water or equivalent media. Br J Radiol Suppl. 1983;17:1-147.
- Tello VM, Tailor RC, Hanson WF. How water equivalent are water-equivalent solid materials for output calibration of photon and electron beams? Med Phys. 1995;22:1177-89. https://doi.org/10.1118/1.597613
- Seuntjens J, Olivares M, Evans M, Podgorsak E. Absorbed dose to water reference dosimetry using solid phantoms in the context of absorbed-dose protocols. Med Phys. 2005;32:2945-53. https://doi.org/10.1118/1.2012807
- Choi CH et al. External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities. Prog Med Phys. 2010;28:50-6.
- Spindeldreier CK et al. Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations. Phys Med Biol. 2017;62:6708-28. https://doi.org/10.1088/1361-6560/aa7ae4
- Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 2005;50:1363-76. https://doi.org/10.1088/0031-9155/50/7/002
- O'Brien DJ, Roberts DA, Ibbott GS', Sawakuchi GO. Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors. Med Phys. 2016;43:4915. https://doi.org/10.1118/1.4959785
- Bouchard H, de Pooter J, Bielajew A, Duane S. Reference dosimetry in the presence of magnetic fields: conditions to validate Monte Carlo simulations. Phys Med Biol. 2015;60:6639-54. https://doi.org/10.1088/0031-9155/60/17/6639