DOI QR코드

DOI QR Code

Characteristics of Phytoplankton Succession Based on the Functional Group in the Enclosed Culture System

대형 배양장치에서 기능그룹에 기초한 식물플랑크톤 천이 특성

  • Lee, Kyung-Lak (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Noh, Seongyu (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Lee, Jaeyoon (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Yoon, Sungae (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Lee, Jaehak (Department of Biology, Kyungpook National University) ;
  • Shin, Yuna (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Lee, Su-Woong (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Rhew, Doughee (Water Quality Assessment Research Division, National Institute of Environmental Research) ;
  • Lee, Jaekwan (Water Environment Research Department, National Institute of Environmental Research)
  • 이경락 (국립환경과학원 유역생태연구팀) ;
  • 노성유 (국립환경과학원 유역생태연구팀) ;
  • 이재윤 (국립환경과학원 유역생태연구팀) ;
  • 윤성애 (국립환경과학원 유역생태연구팀) ;
  • 이재학 (경북대학교 생물학과) ;
  • 신유나 (국립환경과학원 유역생태연구팀) ;
  • 이수웅 (국립환경과학원 유역생태연구팀) ;
  • 류덕희 (국립환경과학원 물환경평가연구과) ;
  • 이재관 (국립환경과학원 물환경연구부)
  • Received : 2017.11.27
  • Accepted : 2017.12.22
  • Published : 2017.12.31

Abstract

The present study was conducted from August to December 2016 in a cylindrical water tank with a diameter of 1 m, a height of 4 m and a capacity of 3,000 L. The field water and sediment from the Nakdong River were also sampled for the experimental culture (field water+sediment) and control culture (field water), respectively. In this study, we aimed to investigate phytoplankton succession pattern using the phytoplankton functional group in the enclosed culture system. A total of 50 species in 27 genera including Chlorophyceae (30 species), Bacillariophyceae (11 species), Cyanophyceae (7 species), and Cryptophyceae (2 species) were identified in the experimental and control culture systems. A total of 19 phytoplankton functional groups (PFGs) were identified, and these groups include B, C, D, F, G, H1, J, K, Lo, M, MP, N, P, S1, $T_B$, $W_0$, X1, X2 and Y. In particular, $W_0$, J and M groups exhibited the marked succession in the experimental culture system with higher biovolumes compared to those of the control culture system, which may be related to the internal cycling of nutrients by sediment in the experimental culture system. The principal component analyses demonstrated that succession patterns in PFG were associated with the main environmental factors such as nutrients(N, P), water temperature and light intensity in two culture systems. In conclusion, the present study showed the potential applicability of the functional group for understanding the adaptation strategies and ecological traits of the phytoplankton succession in the water bodies of Korea.

2016년 8월 19일부터 12월 31일까지 현장원수와 퇴적물이 주입된 현장 배양장치 실험을 통해 환경요인의 영향에 따른 식물플랑크톤 기능그룹(phytoplankton functional group, PFG)의 천이 특성을 연구하였다. 본 연구에서 확인된 식물플랑크톤은 총 27속 50종이었으며, 분류군별로는 녹조류 30종, 규조류 11종, 남조류 7종, 편모조류 2종으로 나타났다. 실험구에서 총 25속 47종(녹조류 30종, 규조류 9종, 남조류 6종, 편모조류 2종), 대조구에서 총 23속 45종(녹조류 26종, 규조류 10종, 남조류 7종, 편모조류 2종)의 식물플랑크톤이 각각 확인되었다. 식물플랑크톤 기능그룹(PFG)은 총 19개(B, C, D, F, G, H1, J, K, Lo, M, MP, N, P, S1, $T_B$, $W_0$, X1, X2, Y)로 확인되었으며, 실험구와 대조구에서는 H1을 제외하고 18개의 PFG가 모두 출현하였다. 생체 부피(biovolume)에 기초했을 때 $W_0$, J 및 M 그룹은 원수만 주입된 대조구와 비교하여 원수와 퇴적물이 주입된 실험구에서 영양염의 내부순환(internal cycling)의 영향으로 더 높은 생체부피를 보이면서 뚜렷한 천이 양상을 나타내었다. PCA 분석 결과에 기초할 때 PFG의 천이 양상은 영양염, 수온 및 조도 등의 주요 환경인자들과의 상관성에 따라 뚜렷한 차이를 나타내었다. 결론적으로 본 연구에서 PFG를 적용하여 주어진 환경조건에서 식물플랑크톤 적응 및 천이(성장) 특성을 확인할 수 있었으며, PFG는 향후 국내 수계의 식물플랑크톤 천이를 이해하기 위한 새로운 방법이 될 수 있을 것으로 생각된다.

Keywords

References

  1. Abonyi, A., M. Leitao, A.M. Lancon and J. Padisak. 2012. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 698(1): 233-249. https://doi.org/10.1007/s10750-012-1130-0
  2. Crossetti, L.O., V. Becker, L.S. Cardoso, L.R. Rodrigues, L.S. Costa and D. Motta-Marques. 2013. Is phytoplankton functional classification a suitable tool to investigate spatial heterogeneity in a subtropical shallow lake? Limnologica 43: 157-163. https://doi.org/10.1016/j.limno.2012.08.010
  3. Davis, T.W., D.L. Berry, G.L. Boyer and C.J. Gobler. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Harmful Algae 8: 715-725. https://doi.org/10.1016/j.hal.2009.02.004
  4. Devercelli, M. and I. O'Farrell. 2013. Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica 43: 67-78. https://doi.org/10.1016/j.limno.2012.05.001
  5. Domingues, R.B., A. Barbosa and H. Galvao. 2005. Nutrients, light and phytoplankton succession in a temperate estuary (the Guadiana, south-western Iberia). Estuarine, Coastal and Shelf Science 64: 249-260. https://doi.org/10.1016/j.ecss.2005.02.017
  6. Grover, J.P. and T.H. Chrzanowski. 2006. Seasonal dynamics of phytoplankton in two warm temperate reservoirs: association of taxonomic composition with temperature. Journal of Plankton Research 28: 1-17. https://doi.org/10.1093/plankt/fbi095
  7. Hillebrand, H., C.-D. Durselen, D. Kirschtel, U. Pollingher and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403-424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x
  8. Kruk, C., N. Mazzeo, G. Lacerot and C.S. Reynolds. 2002. Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research 24(9): 901-912. https://doi.org/10.1093/plankt/24.9.901
  9. Martinet, J., S. Descloux, P. Guedant and F. Rimet. 2014. Phytoplankton functional groups for ecological assessment in young sub-tropical reservoirs: case study of the Nam-Theun 2 Reservoir, Laos, South-East Asia. Journal of Limnology 73(3): 536-550.
  10. Ministry of Environment (MOE). 2017. Standard Methods for the Examination Water Quality. Ministry of Environment. 1507pp.
  11. OECD. 1982. Eutrophication of Waters, Monitoring, Assessment and Control. OECD, Paris. 154pp.
  12. Olenina, I. 2006. Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea. Baltic Marine Environment Protection Commission, Helsinki. 144pp.
  13. Padisak, J., G. Borics, G. Feher, I. Grigorszky, I. Oldal, A. Schmidt and Z. Zambone-Doma. 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157-168. https://doi.org/10.1023/B:HYDR.0000004278.10887.40
  14. Padisak, J., L.O. Crossetti and L. Naselli-Flores. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1-19. https://doi.org/10.1007/s10750-008-9645-0
  15. Paerl, H.W., J. Tucker and P.T. Bland. 1983. Carotenoid enhancement and its role in maintaining blue-green algal (Microcystis aeruginosa) surface blooms. Limnology and Oceanography 28(5): 847-857. https://doi.org/10.4319/lo.1983.28.5.0847
  16. Reynolds, C.S. 2006. The Ecology of Phytoplankton. Cambridge University Press, New York. 535pp.
  17. Reynolds, C.S., V. Huszar, C. Kruk, L. Naselli-Flores and S. Melo. 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24(5): 417-428. https://doi.org/10.1093/plankt/24.5.417
  18. Salmaso, N., L. Naselli-Flores, L. Cerasino, G. Flaim, M. Tolotti and J. Padisak. 2015. Phytoplankton Responses to Human Impacts at Different Scales: 16th Workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP). Springer, New York. 386pp.
  19. Smith, V.H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669-671. https://doi.org/10.1126/science.221.4611.669
  20. Sommer, U. 1985. Seasonal Succession of Phytoplankton in Lake Constance. BioScience 35(6): 351-357. https://doi.org/10.2307/1309903
  21. Sondergaard, M., J.P. Jensen and E. Jeppesen. 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 191: 139-148.
  22. Spears, B.M., L. Carvalho, R. Perkins, A. Kirika and D.M. Paterson. 2007. Sediment phosphorus cycling in a large shallow lake: spatio-temporal variation in phosphorus pools and release. Hydrobiologia 584: 37-48. https://doi.org/10.1007/s10750-007-0610-0
  23. Tan, C., H. Pei, W. Hu, D. Hao, M.A. Doblin, Y. Ren, J. Wei and Y. Feng. 2015. Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China. Environmental Science and Pollution Research 22(22): 18163-18175. https://doi.org/10.1007/s11356-015-4830-y