DOI QR코드

DOI QR Code

The Population Trend and Management for Conservation in Myotis formosus

멸종위기종 붉은박쥐의 개체군 경향과 보호 관리 - 동면처의 장기 모니터링 결과를 중심으로

  • Kim, Sun-Sook (Division of Basic Research, Bureau of Ecological Research, National Institute of Ecology) ;
  • Choi, Yu-Seong (Animal Resources Division, National Institute of Biological Resources)
  • 김선숙 (국립생태원 생태기반연구실) ;
  • 최유성 (국립생물자원관 동물자원과)
  • Received : 2017.11.08
  • Accepted : 2017.12.12
  • Published : 2017.12.31

Abstract

Understanding the need for temperature regulation, behavior, and ecology of hibernating bats provides the possibility of conservation and management for target species. Our objective in this study was to improve understanding of the population trend and ecological requirement in Myotis formosus population in South Korea. From 2007 to 2016, total of 58 hibernacula for Myotis formosus were found across the country. Of the 58 hibernating sites of Myotis formosus, 86% (n=49) were abandoned mines and 14% (n=8) were natural caves. During the survey period, 28 (5%) bats of total 570 bats were observed in natural caves (n=8) and 542 (95%) bats were observed in abandoned mines (n=49). The internal environments of hibernacula of M. formosus were highly stable despite dramatic variation in the external environment. Specifically, we examined the population trend of the endangered bat Myotis formosus in South Korea by long-term monitoring for hibernation sites. The population trend of endangered species M. formosus showed a marked stable in hibernating population. Our results indicate that a tightly collected long-term data set may help to establish the initial approximation of population trends and manage to threats for the endangered bat species.

온대지역에서 동면박쥐에 대한 분포와 생태정보는 대상 종의 보전 및 서식지 보호 관리의 효율성을 높인다. 본 연구에서 멸종위기종인 붉은박쥐 개체군 경향 분석과 생태적 요구 조건을 파악하여 보호 관리 방안을 제시하고자 하였다. 2007년부터 2016년까지 조사를 수행한 결과, 전국 58개의 동면처에서 붉은박쥐 570개체가 확인되었다. 붉은박쥐가 이용한 동면처의 유형은 자연동굴에 비해 폐광산이 많았으며, 폐광산에서 보다 더 많은 붉은박쥐 개체가 동면하는 것이 확인되었다. 붉은박쥐의 동면처는 평균 $12.13{\sim}15.07^{\circ}C$의 온도와 92% 이상의 습도가 동면기간 동안 안정되게 유지되었다. 장기적인 모니터링 자료를 바탕으로 멸종위기종인 붉은박쥐의 개체군의 변화를 평가하기 위하여 TRIM을 이용하여 분석한 결과, 붉은박쥐 개체군의 변화는 안정적인 것으로 평가되었다. 그럼에도 불구하고 일부 동면처 사례를 통하여 동면처의 구조 및 환경 변화로 인한 붉은박쥐 개체수가 급감되는 사실을 확인하였다. 본 연구는 장기 모니터링 결과에 근거한 개체군 경향분석 결과와 현장 사례를 분석을 통하여 멸종위기종인 붉은박쥐의 보전 및 서식지 보호 관리 방향을 제시한다. 따라서 멸종위기종인 붉은박쥐의 서식지 보호 관리 방안은 방향은 종의 온도 선호도 및 서식지 환경이 변화되지 않도록 유지하는 것과 서식지 내 인위적인 간섭요인을 차단하는 것은 중요 사항이 될 것이다.

Keywords

References

  1. Agosta, S.J. 2002. Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North America: A case for conserving an abundant species. Mammal Review 32: 179-198. https://doi.org/10.1046/j.1365-2907.2002.00103.x
  2. Alcock, J. 1998. Animal behavior: an evolutionary approach, 6th ed. Sinauer, Sunderland, Mass.
  3. Arlettaz, R., C. Ruchet, J. Aeschimann, E. Brun, M. Genoud and P. Vogel. 2000. Physiological traits affecting the distribution and wintering strategy of the bat Tadarida teniotis. Ecology 81: 1004-1014. https://doi.org/10.1890/0012-9658(2000)081[1004:PTATDA]2.0.CO;2
  4. Barclay, R.M., J. Ulmer, C.J. MacKenzie, M.S. Thompson, L. Olson, J. McCool and G. Poll. 2004. Variation in the reproductive rate of bats. Canadian Journal of Zoology 82: 688-693. https://doi.org/10.1139/z04-057
  5. Battersby, J. 2010. Guidelines for Surveillance and Monitoring of European Bats. EUROBATS Publication Series No. 5. UNEP/EUROBATS Secretariat, Bonn, Germany, 95pp.
  6. Bouma, H.R., H.V. Carey and F.G. Kroese. 2010. Hibernation: the immune system at rest? Journal of Leukocyte Biology 88: 619-624. https://doi.org/10.1189/jlb.0310174
  7. Boyles, J.G., M.B. Dunbar, J.J. Storm and V. Brack. 2007. Energy availability influences microclimate selection of hibernating bats. Journal of Experimental Biology 210: 4345-4350. https://doi.org/10.1242/jeb.007294
  8. Braak, C.J.F. ter, A.J. Van Strien and R. Meijer. 1994. Analysis of monitoring data with many missing values: which method? p. 663-673. In: Bird Numbers 1992. Distribution, monitoring and ecological aspects (Hagemeijer, E.J.M. and T.J. Verstrael, eds.). Proceedings of the 12th International Conference of IBCC and EOAC, Noordwijkerhout, The Netherlands. Statistics Netherlands, Voorburg/Heerlen & SOVON, Beek-Ubbergen.
  9. Brack, V., Jr. 2007. Temperatures and locations used by hibernating bats, including Myotis sodalis (Indiana bat), in a limestone mine: implications for conservation and management. Environmental Management 40: 739-746. https://doi.org/10.1007/s00267-006-0274-y
  10. Brady, J., T.H. Kunz, M.D. Tuttle and D. Wilson. 1982. Gray Bat Recovery Plan. Denver, Colorado: U.S. Fish and Wildlife Service.
  11. Busotti, S., A. Terlizzi, S. Fraschetti, G. Belmonte and F. Boero. 2006. Spatial and temporal variability of sessile benthos in shallow Mediterranean marine caves. Marin Ecology Progress Series 325: 109-119. https://doi.org/10.3354/meps325109
  12. Dietz, C., D. Nill and O. von Helversen. 2009 . Bats of Britain, Europe and Northwest Africa. A and C Black.
  13. Elgar, M.A. and P.H. Harvey. 1987. Basal metabolic rates in mammals: allometry, phylogeny and ecology. Functional Ecology 1: 25-36. https://doi.org/10.2307/2389354
  14. Encarnacao, J.A., M.S. Otto and N.I. Becker. 2012. Thermoregulation in male temperate bats depends on habitat characteristics. Journal of Thermal Biology 37: 564-569. https://doi.org/10.1016/j.jtherbio.2012.07.002
  15. Fenton, M.B. 1997. Science and the conservation of bats. Journal of Mammalogy 78: 1-14. https://doi.org/10.2307/1382633
  16. Foley, J., D. Clifford, K. Castle, P. Cryan and R.S. Ostfeld. 2011. Investigating and managing the rapid emergence of white-nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conservation Biology 25: 223-231.
  17. Geiser, F. and C. Stawski. 2011. Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integrative and Comparative Biology 51: 337-348. https://doi.org/10.1093/icb/icr042
  18. Geiser, F. and G.J. Kenagy. 1988. Torpor duration in relation to temperature and metabolism in hibernating ground squirrels. Physiological Zoology 61: 442-449. https://doi.org/10.1086/physzool.61.5.30161266
  19. Geiser, F. and T. Ruf. 1995. Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiological Zoology 68: 935-966. https://doi.org/10.1086/physzool.68.6.30163788
  20. Gregory, R.D., P. Vorisek, D.G. Noble, A.J. Van Strien, A. Klvanova, M. Eaton, A.W. Meyling, A. Joys, R.P.B. Foppen and I.J. Burfield. 2008. The generation and use of bird population indicators in Europe. Bird Conservation International 18: S223-S244.
  21. Harvell, C.D., C.E. Mitchell, J.R. Ward, S. Altizer and A.P. Dobson. 2002. Climate warming and disease risks for terrestrial and marine biota. Science 296: 2158-2162. https://doi.org/10.1126/science.1063699
  22. Hayssen, V. and R.C. Lacy. 1985. Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comparative Biochemistry and Physiology Part A: Physiology 81: 741-754. https://doi.org/10.1016/0300-9629(85)90904-1
  23. Humphrey, S.R. and M.K. Oli. 2015. Population dynamics and site fidelity of the cave bat, Myotis velifer, in Oklahoma. Journal of Mammalogy 96: 946-956. https://doi.org/10.1093/jmammal/gyv095
  24. Humphries, M.M., D.W. Thomas and J.R. Speakman. 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418: 313-316. https://doi.org/10.1038/nature00828
  25. Ingersoll, T.E., B.J. Sewall and S.K. Amelon, 2013. Improved analysis of long-term monitoring data demonstrates marked regional declines of bat populations in the eastern United States. PLoS One 8: e65907. https://doi.org/10.1371/journal.pone.0065907
  26. Kannan, K., S.H. Yun, R.J. Rudd and M. Behr. 2010. High concentrations of persistent organic pollutants including PCBs, DDT, PBDEs and PFOS in little brown bats with white-nose syndrome in New York, USA. Chemosphere 80: 613-618. https://doi.org/10.1016/j.chemosphere.2010.04.060
  27. Keith, W.M., D.M. Leslie, Jr., M.E. Payton, W.L. Puckette and S.L. Hensley. 2006. Impacts of passage manipulation on cave climate: conservation implications for cave-dwelling bats. Wildlife Society Bulletin 34: 137-143. https://doi.org/10.2193/0091-7648(2006)34[137:IOPMOC]2.0.CO;2
  28. Kim, S.S., Y.S. Choi and J.C. Yoo. 2013. Thermal preference and hibernation period of Hodgson's bats (Myotis formosus) in the temperate zone: how does the phylogenetic origin of a species affect its hibernation strategy? Canadian Journal of Zoology 91: 47-55. https://doi.org/10.1139/cjz-2012-0145
  29. Kim, S.S., Y.S. Choi and J.C. Yoo. 2014. The thermal preference and the selection of hibernacula in seven cave-dwelling bats. Korean Journal of Ecology and Environment 47: 258-272. https://doi.org/10.11614/KSL.2014.47.4.258
  30. Klys, G., Z. Caputa and P. Gula. 2002. Bats hibernation and ecoclimate in historical mine of Tarnowskie Gory-Bytom undergrounds. Materialy XXI Szkuly Speleologicznej, Cieszyn-MoraawskiKras 7: 45-49.
  31. Kokurewicz, T. 2004. Sex and age related habitat selection and mass dynamics of Daubenton's bats Myotis daubentonii (Kuhl, 1817) hibernating in natural conditions. Acta Chiropterologica 6: 121-144. https://doi.org/10.3161/001.006.0110
  32. Kunz, T.H. and L.F. Lumsden. 2003. Ecology of cavity and foliage roosting bats, p. 3-89. In: Bat Ecology (Kunz, T.H. and M.B. Fenton, eds.). The University of Chicago Press, Chicago.
  33. Kunz, T.H., M. Betke, N.I. Hristov and M.J. Vonhof. 2009. Methods for assessing colony size, population size, and relative abundance of bats, p. 133-158. In: Ecological and behavioral methods for the study of bats, 2nd ed (Kunz, T.H. and S. Parsons, eds.). Johns Hopkins University Press, Baltimore, Maryland.
  34. Laurance, W.F. and D.C. Useche. 2009. Environmental synergisms and extinctions of tropical species. Conservation Biology 23: 1427-1437. https://doi.org/10.1111/j.1523-1739.2009.01336.x
  35. Lewis, S.E. 1995. Roost fidelity of bats: a review. Journal of Mammalogy 76: 481-496. https://doi.org/10.2307/1382357
  36. Lorch, J.M., C.U. Meteyer, M.J. Behr, J.G. Boyles, P.M. Cryan, A.C. Hicks, A.E. Ballmann, J.T.H. Coleman, D.N. Redell, D.M. Reeder and D.S. Blehert. 2011. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480: 376-378. https://doi.org/10.1038/nature10590
  37. Lyman, C.P., J.S. Willis, A. Malan and L.C.H. Wang, eds. 1982. Hibernation and Torpor in Mammals and Birds. Academic Press, New York.
  38. McNab, B.K. 1974. The behavior of temperate cave bats in a subtropical environment. Ecology 55: 943-958. https://doi.org/10.2307/1940347
  39. McNab, B.K. 1982. Evolutionary alternative in the physiological ecology of bats. p. 151-196. In: Ecology of Bats (T.H. Kunz, ed.). Plenum Publishing Corporation, New York.
  40. McNab, B.K. 1997. On the utility of uniformity in the definition of basal metabolic rate. Physiological Zoology 70: 718-720. https://doi.org/10.1086/515881
  41. Morrison, M.L., B.G. Marcot and R.W. Mannan. 1998. Wildlife-habitat relationships: concepts and applications, 2nd ed. University of Wisconsin Press.
  42. NIER. 2012. The Survey on Ecological landscape Conservation Area: Yangpicheon and Gosanbong. NIER. 644 p. (in Korean)
  43. O'Donnell, C.F.J. 2000. Conservation status and causes of decline of the threatened New Zealand long-tailed bat Chalinolobus tuberculatus (Chiroptera: Vespertilionidae). Mammal Review 30: 89-106. https://doi.org/10.1046/j.1365-2907.2000.00059.x
  44. O'Shea, T.J., M.A. Bogan and L.E. Ellison. 2003. Monitoring trends in bat populations of the United States and territories: status of the science and recommendations for the future. Wildlife Society Bulletin 31: 16-29.
  45. Pannekoek, J. and A. van Strien. 2005. TRIM 3 Manual (TRends & Indices for Monitoring data). Statistics Netherlans, Voorburg. 29pp.
  46. Perry, R.W. 2012. A review of factors affecting cave climates for hibernating bats in temperate North America. Environmental Reviews 21: 28-39.
  47. Pruitt, L. and L. TeWinkel, eds. 2007. Indiana Bat (Myotis sodalis) Draft Recovery Plan: First Revision. Fort Snelling, Minnesota: U.S. Fish and Wildlife Service. 258 p.
  48. Racey, P.A. 2009. Bats: status, threat and conservation successes-Introduction. Endangered Species Research 8: 1-3. https://doi.org/10.3354/esr00213
  49. Raesly, R.L. and J.E. Gates. 1987. Winter habitat selection by north temperate cave bats. American Midland Naturalist 118: 15-13. https://doi.org/10.2307/2425624
  50. Ransome, R.D. 1968. The distribution of the greater horse-shoe bat, Rhinolophus ferrumequinum, during hibernation, in relation to environmental factors. Journal of Zoology 154: 77-112.
  51. Romero, A. 2009. Cave Biology: Life in Darkness. Cambridge University Press.
  52. Sandel, J.K., G.R. Benetar, K.M. Burke, C.W. Walker, T.E. Lacher, Jr. and R.L. Honeycutt. 2001. Use of selection of winter hibernacula by the Eastern Pipistrelle (Pipstrelllus subflavus) in Texas. Journal of Mammalogy 82: 173-178. https://doi.org/10.1644/1545-1542(2001)082<0173:UASOWH>2.0.CO;2
  53. Scalet, C.G., L.D. Flake and D.W. Willis. 1996. Introduction to wildlife and fisheries: an integrated approach. W.H. Freeman.
  54. Schmidt-Nielsen, K. 1997. Animal physiology: adaptation and environment. Cambridge University Press, Cambridge, England.
  55. Speakman, J.R. and P.A. Racey. 1989. Hibernal ecology of the pipistrelle bat: energy expenditure, water requirements and mass loss, implications for survival and the function of winter emergence flights. Journal of Animal Ecology 58: 797-813. https://doi.org/10.2307/5125
  56. Stadelmann, B., D.S. Jacobs, C. Schoeman and M. Ruedi. 2004. Phylogeny of African Myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. Acta Chiropterologica 6: 177-192. https://doi.org/10.3161/001.006.0201
  57. Stawski, C. and F. Geiser. 2011. Do season and distribution affect thermal energetics of a hibernating bat endemic to the tropics and subtropics? The American Journal of Physiology 301: R542-R547.
  58. Stawski, C. and F. Geiser. 2012. Will temperature effects or phenotypic plasticity determine the thermal response of a heterothermic tropical bat to climate change? PLoS ONE 7: e40278. https://doi.org/10.1371/journal.pone.0040278
  59. Thomas, D.W. 1995. Hibernating bats are sensitive to nontactile human disturbance. Journal of Mammalogy 76: 940-946. https://doi.org/10.2307/1382764
  60. Thomas, D.W., M. Dorais and J.M. Bergeron. 1990. Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. Journal of Mammalogy 71: 475-479. https://doi.org/10.2307/1381967
  61. Tidemann, C.R. and S.C. Flavel. 1987. Factors affecting choice of diurnal roost site by tree-hole bats (Microchiroptera) in southeastern Australia. Wildlife Research 14: 459-473. https://doi.org/10.1071/WR9870459
  62. Turbill, C., C. Bieber and T. Ruf. 2011. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proceedings of the Royal Society B: Biological Science 278: 3355-3363. https://doi.org/10.1098/rspb.2011.0190
  63. Tuttle, M.D. 2003. Estimating population sizes of hibernating bats in caves and mines, p. 31-39. In: Monitoring Trends in Bat Populations of the United States and Territories: Problems and Prospects (O'Shea, T.J. and M.A. Bogan, eds.). Information and Technology Report, USGS.
  64. Tuttle, M.D. and D. Stevenson. 1982. Growth and survival of bats, p. 105-150. In: Bat Ecology (Kunz, T.H. and M.B. Fenton, eds.). The University of Chicago Press, Chicago.
  65. Tuttle, M.D. and J. Kennedy. 2002. Thermal requirements during hibernation, p. 68-78. In: The Indiana Bat: Biology and Management of an Endangered Species (Kurta, A. and J. Kennedy, eds.). Bat Conservation International.
  66. Voigt, C.C. and T. Kingston, eds. 2016. Bats in the Anthropocene: conservation of bats in a changing world (Vol. 606). New York: Springer Open.
  67. Wang, H.G., R.D. Owen, C.S Hernandez and M.D.L. Romero-Almaraz. 2003. Ecological characterization of bats species distribution in Michoacan, Mexico using a geographic information system. Global Ecology and Biogeography 12: 65-85. https://doi.org/10.1046/j.1466-822X.2003.00318.x
  68. Webb, P.I., J.R. Speakman and P.A. Racey. 1996. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Canadian Journal of Zoology 74: 761-765. https://doi.org/10.1139/z96-087
  69. Wong, S., S. Lau, P. Woo and K.Y. Yuen. 2007. Bats as a continuing source of emerging infections in humans. Reviews in Medical Virology 17: 67-91. https://doi.org/10.1002/rmv.520