DOI QR코드

DOI QR Code

Vertical Distribution of Vascular Plant Species along an Elevational Gradients in the Gyebangsan Area of Odaesan National Park

오대산국립공원 계방산지구 관속식물의 고도별 수직분포

  • An, Ji-Hong (Plant Resources Division, National Institute of Biological Resources) ;
  • Park, Hwan-Jun (Plant Resources Division, National Institute of Biological Resources) ;
  • Nam, Gi-Heum (Plant Resources Division, National Institute of Biological Resources) ;
  • Lee, Byoung-Yoon (Plant Resources Division, National Institute of Biological Resources) ;
  • Park, Chan-Ho (Exhibition and Education Division, National Institute of Biological Resources) ;
  • Kim, Jung-Hyun (Plant Resources Division, National Institute of Biological Resources)
  • 안지홍 (국립생물자원관 식물자원과) ;
  • 박환준 (국립생물자원관 식물자원과) ;
  • 남기흠 (국립생물자원관 식물자원과) ;
  • 이병윤 (국립생물자원관 식물자원과) ;
  • 박찬호 (국립생물자원관 전시교육과) ;
  • 김중현 (국립생물자원관 식물자원과)
  • Received : 2017.09.01
  • Accepted : 2017.11.28
  • Published : 2017.12.31

Abstract

In order to investigate distribution of vascular plants along elevational gradient in the Nodong valley of Gyebangsan, vascular plants of eight sections with 100-meter-high were surveyed from the Auto-camping site (800 m) to the top of a mountain (1,577 m). There were a total of 382 taxa: 89 families, 234 genera, 339 species, 7 subspecies, 34 varieties, and 2 forms. As a result of analyzing the pattern of species richness, it showed a reversed hump-shaped with minimum richness at mid-high elevation. As a result of analyzing habitat affinity types, the proportion of forest species increased with increasing elevation. But, the ruderal species decreased with increasing elevation, and then increased at the top of a mountain. As for the proportion of life forms, the annual herbs gradually decreased with increasing elevation, but it did not appear between 1,300 m and 1,500 m and then increased at the top of a mountain. The trees gradually increased with elevation and decreased from 1,300~1,400 m. The vascular plants divided into four groups by using DCA. The arrangement of each stands was arranged in order from right to left on the I axis according to the elevation. The distribution of vascular plants is determined by their own optimal ranges of vegetation. Also, rise in temperature due to climate change affects the distribution of vascular plants, composition, and diversity. Therefore, continuous monitoring is necessary to confirm ecological and environmental characteristics of vegetation, distribution ranges, changes of habitat. Furthermore, plans for conservation and management based on these data should be prepared according to climate change.

오대산국립공원 계방산 노동계곡일대 관속식물의 고도별 수직분포 및 분포변화를 파악하기 위해 오토캠핑장(800 m)에서 정상(1,577 m)까지 해발 100 m 단위로 등분하여 8개 구간에 대한 식물목록을 작성하였다. 총 4회에 걸쳐 현지조사를 실시한 결과 관속식물은 85과 234속 339종 7아종 34변종 2품종의 총 382분류군으로 조사되었다. 구간별 식물 종다양성 패턴을 분석한 결과, 고도가 증가함에 따라 점차 감소하다가 특정 구간에서부터 다시 증가하는 역단봉형 패턴을 보였다. 이러한 분포패턴은 기후요인, 토양의 이화학적 요인, 지형적 요인, 광량, 인위적 교란 등 다양한 인자가 영향을 미친 것으로 판단된다. 출현 종들의 생장형과 광 요구조건에 따라 생육지 유형을 비교한 결과, 고도가 높아짐에 따라 산림에 생육하는 종의 비율은 증가하고, 교란지에 생육하는 종의 비율은 점차 감소하다가 정상부에서 다시 증가하는 경향을 보였다. 생활형에 따른 출현 비율을 비교한 결과, 일년생 초본의 경우 고도가 증가함에 따라 점차 감소하다가 1,300~1,500 m 구간에서는 출현하지 않았으며 마지막 정상부 구간에서 약간 증가하였다. 다년생 초본, 만경류 및 관목성 수종의 출현비율은 고도가 증가함에 따라 증감을 반복하였으며, 교목성 수종의 경우 점차 증가하다가 1,300~1,400 m 구간부터 감소하는 경향을 보였다. DCA 기법을 이용하여 출현종의 고도별 분포변화를 분석한 결과, 4개의 그룹으로 구분되었다. 구간별 식분의 배치는 I축상의 오른쪽으로부터 왼쪽을 향해 고도에 따라 순차적으로 배열됨에 따라 고도에 따른 온도변화가 그 식물분포의 양상에 영향을 미칠 수 있음을 확인할 수 있었다. 호적범위는 식물종의 분포를 결정하기 때문에 기후변화로 인한 기온 상승은 현재 식물종의 분포, 종조성 및 다양성에 영향을 미칠 것으로 판단된다. 따라서 식물종들의 생태 환경적 특징과 분포역, 생육지의 변화를 파악하기 위한 지속적인 모니터링이 필수적이다. 나아가 이러한 자료를 토대로 기후변화에 따른 식물자원의 보전 및 관리방안이 마련되어야 할 것이다.

Keywords

References

  1. Acharya, B.K., C. Basundhara and V. Lalitha. 2011. Distribution pattern of trees along an elevation gradient of eastern Himalaya, India. Acta Oecologica 37: 329-3360. https://doi.org/10.1016/j.actao.2011.03.005
  2. Baniya, C.B., T. Solhoy, Y. Gauslaa and M.W. Palmer. 2012. Richness and composition of vascular plants and cryptogams along a high elevational gradient on Buddha Mountain, Central Tibet. Foloa Geobot 47: 135-151. https://doi.org/10.1007/s12224-011-9113-x
  3. Bhuju, D.R. and M. Ohsawa. 1999. Species dynamics and colonization patterns in an abandoned forest in an urban landscape. Ecology Research 14: 139-153. https://doi.org/10.1046/j.1440-1703.1999.00289.x
  4. Cheon, K.I., J.H. Chun, H.M. Yang, J.H. Lim and J.H. Shin. 2014a. Changes of understory vegetation structure for 10 years in long-term ecological research site at Mt. Gyebang. Journal of Korean Forest Society 103(1): 1-11. (in Korean) https://doi.org/10.14578/jkfs.2014.103.1.1
  5. Cheon, K.I., S.H. Joo, J.H. Sung, J.H. Chun and Y.G. Lee. 2014b. Understory vegetation structure by altitude and azimuth slope and indicator species analysis in Mt. Gyebang. Journal of Korean Forest Society 103(2): 165-147. (in Korean) https://doi.org/10.14578/jkfs.2014.103.2.165
  6. Cho, M.G., J.H. Chung, H.R. Jung, H.S. Moon and M.Y. Kang. 2012. Vegetation structure of Picea jezoensis communities in Mt. Deogyu and Mt. Gyebang. Journal of Agriculture & Life Science 46(6): 33-41. (in Korean)
  7. Cox, G.W. 1976. Laboratory manual of general ecology (3rd ed.). William. C. Brown Company, Iowa. 232pp.
  8. Duarte, C.M. 1999. Method in comparative functional ecology. In: Handbook of functional plant ecology (Pugnaire, F. I. and F. Valladares, eds.). Marcel Dekker. New York. pp. 1-8.
  9. Galan de Mera, A., M.A. Hagen and J.A. Vicente Orellana. 1999. Aerophyte, a new life form in Raunkiaer's classification. Journal of Vegetation Science 10: 65-68. https://doi.org/10.2307/3237161
  10. Goodland, R. 1971. A physiognomic analysis of the "cerrado" vegetation of central Brazil. Journal of Ecology 59: 411-419. https://doi.org/10.2307/2258321
  11. Grytnes, J.A. and O.R. Vetaas. 2002. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. American Naturalist 159: 294-304. https://doi.org/10.1086/338542
  12. Guariguata, M.R. and R. Ostertag. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148: 185-206. https://doi.org/10.1016/S0378-1127(00)00535-1
  13. Halpern, C.B. 1989. Early successional patterns of forest species: Interactions of life history traits and disturbance. Ecology 70: 704-720. https://doi.org/10.2307/1940221
  14. Heaney, L.R. 2001. Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography 10: 15-39. https://doi.org/10.1046/j.1466-822x.2001.00227.x
  15. Hill, M.O. and H.G. Gauch. 1980. Detrended correspondence analysis, an improved ordination technique. Vegtatio 42: 47-58. https://doi.org/10.1007/BF00048870
  16. Hua, A. 2004. Distribution of plant species richness along elevation gradient in Hubei Province, China. International institute for earth system science, Nanjing University. pp. 1-13.
  17. Hunter, M.L. and P. Yonzon. 1993. Altitudinal distributions of birds, mammals, people, forests, and parks in Nepal. Conservation Biology 7(2): 420-423. https://doi.org/10.1046/j.1523-1739.1993.07020420.x
  18. Jo, M.Y. 1981. The flora of Mt. Gaebang. Master Thesis, Konkuk University, Seoul, Korea. (in Korean)
  19. Kessler, M. 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology 149: 181-193. https://doi.org/10.1023/A:1026500710274
  20. Kim, C.H., J.G. Oh, E.O. Kang, C.S. Yun and J.K. Lim. 2014. Community distribution on mountain forest vegetation of the Gyebangsan area in the Odaesan national park, Korea. Korean Journal of Ecology and Environment 47(3): 135-145. (in Korean) https://doi.org/10.11614/KSL.2014.47.3.135
  21. Kim, J.H., S.Y. Kim, C.H. Park, B.Y. Lee and J.H. Yun. 2015. Vertical distribution of vascular plants in Namdeogyusan, Mt. Deogyu National Park by temperature gradient. Korean Journal of Environment and Ecology 29(5): 651-680. (in Korean) https://doi.org/10.13047/KJEE.2015.29.5.651
  22. Kim, J.S. and T.Y. Kim. 2011. Woody plants of Korean Peninsula. Dolbegae, Paju. (in Korean)
  23. Kira, T. 1948. On the altitudinal arrangement of climatic zones in Japan. Kanti-Nogaku 2: 147-173.
  24. Ko, S.C., G.H. Tae and H.S. Lee. 1991. The flora of Mt. Gyebang. Journal of Science Research Institute Han Nam University 21: 131-158. (in Korean)
  25. Korea Fern Society. 2005. Ferns and Fern Allies of Korea. Geobook, Seoul. 688p. (in Korean)
  26. Korea Meteorological Administration. 2016. Climatological stand normal of Korea. http://www.kma.go.kr (in Korean)
  27. Lande, R. 1982. A quantitative genetic theory of life history evolution. Ecology 63: 607-615. https://doi.org/10.2307/1936778
  28. Lee, B.Y., G.H. Nam, J.H. Yun, G.Y. Cho, J.S. Lee, J.H. Kim, T.S. Park, K.G. Kim and K.H. Oh. 2010. Biological indicators to monitor responses against climate change in Korea. Korean Journal of Plant Taxonomy 40: 202-207. https://doi.org/10.11110/kjpt.2010.40.4.202
  29. Lee, B.Y., G.H. Nam, J.Y. Lee, C.H. Park, C.E. Lim, M.H. Lee, S.J. Lee, T.K. Noh, J.A. Lim, J.E. Han and J.H. Kim. 2011. National list of species of Korea (vascular plants). National Institute of Biological Resources, Incheon. (in Korean)
  30. Lee, C.B. and J.H. Chun. 2015. Environmental Drivers of Patterns of Plant Diversity along a wild environmental gradient in Korean Temperate Forests. Forests 7(1) 19: 1-16. https://doi.org/10.3390/f7010001
  31. Lee, C.B., J.H. Chun and H.H. Kim. 2013. Elevational pattern and determinants of ${\alpha}$ and ${\beta}$ plant diversity on the ridge of the baekdudaegan mountains, South Korea. Journal of Agriculture & Life Science 48(3): 93-104. (in Korean) https://doi.org/10.14397/jals.2014.48.3.93
  32. Lee, K.J., W. Cho and B.H. Han. 1996. Plant community structure of Pinus densiflora forests in Odaesan National Park. Korean Journal of Environment and Ecology 9(2): 115-125. (in Korean)
  33. Lee, T.B. 1980. Illustrated flora of Korea. Hyangmunsa, Seoul. 990p. (in Korean)
  34. Lee, T.B. 2003. Coloured flora of Korea. Vol. I,II. Hyangmunsa, Seoul. 1928p. (in Korean)
  35. Lee, W.T. 1996a. Lineamenta florae Koreae. Academy Press, Seoul. 689p. (in Korean)
  36. Lee, W.T. 1996b. Standard illustrations of Korean plants. Academy Press, Seoul. 624p. (in Korean)
  37. Lee, W.T and Y.J. Yim. 1978. Studies on the distribution of vascular plants in the Korean peninsula. Korean Journal of Plant Taxonomy 8: 1-33. (in Korean) https://doi.org/10.11110/kjpt.1978.8.1.001
  38. Lee, Y.N. 1996. Flora of Korea. Gyohaksa, Seoul. 1247p. (in Korean)
  39. Lee, Y.N. 2006. New flora of Korea. Vol. I,II. Gyohaksa, Seoul. 1859p. (in Korean)
  40. Li, J.S., Y.L. Song and Z.G. Zeng. 2003. Elevational gradients of small mammal diversity on the northern slopes of Mt. Qilian, China. Global Ecology and Biogeography 12: 449-460. https://doi.org/10.1046/j.1466-822X.2003.00052.x
  41. Mark, A.F., K.J.M. Dickinson and R.G.M Hofstede. 2000. Alpine vegetation, plant distribution, life form, and environments in a humid New Zealand region: Oceanic and tropical high mountain affinities. Arctic Antarctic and Alpine Research 32: 240-254. https://doi.org/10.2307/1552522
  42. Matteodo, M., W. Sonja, S. Veronika, R. Christian and V. Pascal. 2013. Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environmental Research Letters 8: 1-10.
  43. McCain, C.M. 2009. Global analysis of bird elevation diversity. Global Ecology and Biogeography 18: 346-360. https://doi.org/10.1111/j.1466-8238.2008.00443.x
  44. Miller, J.H., B.R. Jutter, S.M. Zedaker, M.B. Edwards and R.A. Newbold. 1995. Early plant succession in lobololly pine plantations as affected by vegetation management. Southern Journal of Applied Forestry 19: 109-116.
  45. National Institute of Biological Resources. 2013. Endemic Species of Korea. NIBR, Incheon. (in Korean)
  46. National Institute of Environmental Research. 2012. A Guide to the 4th Natural Environment Research, Incheon. pp. 173-226. (in Korean)
  47. Noble, I.R. and H. Gitay. 1996. A functional classification for predicting the dynamics of landscape. Journal of Vegetation Science 7: 329-336. https://doi.org/10.2307/3236276
  48. Oh, B.U., D.G. Jo, S.C. Ko, H.T. Im, W.K. Paik, G.Y. Chung, C.Y. Yoon, K.O. Yoo, C.G. Jang and S.H. Kang. 2009. Distribution Maps of Vascular Plants of Korean Peninsula, VI. Central Province (Gangwon-do). Korea Forest Service, Daejeon. (in Korean)
  49. Oh, Y.C. 2006. Illustrated Encyclopedia of Fauna & Flora of Korea Vol. 41. Monocotyledoneae, Cyperaceae. Ministry of Education and Human Resources Development, Seoul. 446p. (in Korean)
  50. Ohsawa, M. 1995. Latitudinal comparison of altitudinal changes in forest structure, leaf-type, and species richness in humid monsoon Asia. Vegetatio 121: 3-10. https://doi.org/10.1007/BF00044667
  51. Oommen, M.A. and K. Shanker. 2005. Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology 86: 3039-3047. https://doi.org/10.1890/04-1837
  52. Pausas, J.G. and J. Carreras. 1995. The effect of bedrock type, temperature and moisture on species richness of Pyrenean Scotspine (Pinus sylvestris L.) forests. Vegetatio 116: 85-92.
  53. Pausas, J.G. and M.K. Austin. 2001. Patterns of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science 12: 153-166. https://doi.org/10.2307/3236601
  54. Pellissier, L., B. Fournier, A. Guisan and P. Vittoz. 2010. Plant traits co-vary with altitude in grassland and forests in the European Alps. Plant Ecology 211: 351-365. https://doi.org/10.1007/s11258-010-9794-x
  55. Rahbek, C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography 18: 200-205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x
  56. Ren, H.B., S.K. Niu, L.Y. Zhang and K.P. Ma. 2006. Distribution of vascular plant species richness along an elevational gradient in the Dongling mountains, Beijing, China. Journal of Integrative Plant Biology 48(2): 153-160. https://doi.org/10.1111/j.1744-7909.2006.00153.x
  57. Rowe, R.J. 2009. Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography 32: 411-422. https://doi.org/10.1111/j.1600-0587.2008.05538.x
  58. Sanders, N.J. 2002. Elevational gradients in ant species richness: area, geometry, and Rapoport's rule. Ecography 25: 25-32. https://doi.org/10.1034/j.1600-0587.2002.250104.x
  59. Shin, J.H., B.C. Lee, H.J. Cho, S.W. Bae, C.I. Ryoo, H.C. Park, J.H. Shim and S.H. Chun. 1996. Biodiversity of forest ecosystems in Mt. Gyebang and Ulreung Island. Forestry Research Institute. (in Korean)
  60. Virtanen, R. and M.J. Crawley. 2010. Contrasting patterns in bryophyte and vascular plant species richness in relation to elevation, biomass and Soay sheep on St Kilda, Scotland. Plant Ecology & Diversity 3(1): 77-85. https://doi.org/10.1080/17550874.2010.492403
  61. Walker, B.H. 1992. Biodiversity and ecological redundancy. Conservation Biology 6: 18-23. https://doi.org/10.1046/j.1523-1739.1992.610018.x
  62. Wang, G.H., G.S. Zhou and L.M. Yang. 2003. Distribution, species diversity and life form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology 165(2): 169-181. https://doi.org/10.1023/A:1022236115186
  63. Westoby, M. 1999. Generalization in functional plant ecology: the species sampling problem, plant ecology strategy schemes and phylogeny. p. 847-872. In: Handbook of functional plant ecology (Pugnaire, F.I. and F. Valladares, eds.). New York. Marcel Dekker.
  64. Whittaker, R.H. 1956. Vegetation of the great smoky mountains. Ecology Monographs 26: 1-80. https://doi.org/10.2307/1943577
  65. Wilson, J.B. 1999. Guilds, functional types and ecological groups. Oikos 86: 507-522. https://doi.org/10.2307/3546655
  66. Yang, J.C., H.S. Hwang, H.J. Lee, S.Y. Jung, S.J. Ji, S.H. Oh and Y.M. Lee. 2014. Distribution of vascular plants along the altitudinal gradient of Gyebangsan (Mt.) in Korea. Journal of Asia-Pacific Biodiversity 7: 40-71. https://doi.org/10.1016/j.japb.2014.03.008
  67. Yim, Y.J. 1977a. Distribution of forest vegetation and climate in the Korean Peninsula. III. Distribution of tree species along the thermal gradient. Japanese Journal of Ecology 27: 177-189.
  68. Yim, Y.J. 1977b. Distribution of forest vegetation and climate in the Korean Peninsula. IV. Zonal distribution of forest vegetation in relation to thermal climate. Japanese Journal of Ecology 27: 177-189.
  69. You, J.H., H.W. Cho, S.G. Jung and C.H. Lee. 2004. Correlation analysis between growth and environmental characteristics in Abeliophyllum distichum habitats. Korean Journal of Environment and Ecology 18(2): 210-220. (in Korean)
  70. Yun, J.H., J.H. Kim, K.H. Oh and B.Y. Lee. 2010. Vertical distribution of vascular plants in Jungsanri, Mt. Jiri by temperature gradient. Korean Journal of Environment and Ecology 24(6): 680-707. (in Korean)
  71. Yun, J.H., J.H. Kim, S.Y. Kim, C.H. Park and B.Y. Lee. 2012. Vertical distribution of vascular plants in Osaek valley, Seoraksan National Park by temperature gradient. Korean Journal of Environment and Ecology 26(2): 156-185. (in Korean)