DOI QR코드

DOI QR Code

Practical Research for Quantitative Expression of Leakage Through Optical Gas Image

광학가스이미지에서 유출량의 정량표시 실험적 연구

  • Received : 2017.03.09
  • Accepted : 2017.09.10
  • Published : 2017.10.30

Abstract

In chemical industry plants, the raw material, intermediate and final products can leak from unstable joints of flanges and valves as well as cracks of storage tanks. From the safety and economic standpoints, it is very important to understand whether leaks or not and leakage rate. The OGI(optical gas image) technique can tell gas leakages, but cannot give the leakage rate. Some special OGI devices can show the kind of gas in different color concentration in different darkness. Therefore the research on quantification of OGI is necessary. In this research, we have developed the practical method to quantify OGI of methane leakage. To estimate 3-dimensional gas leakages distribution from 2-dimensional OGI, the Monte Carlo Probability technique was applied. First the number of points in the area of width(2.54 cm) and length(2.54 cm) in OGI was counted. Total no of each experiment was compared with the measured flow rate. The correlation average between total points and measured flow rate was found to be 0.980. Reversely we estimated the leakage rate of OGI by use of the correlation table. The results showed good agreement between the estimation value and the measured value.

화학플랜트 산업단지 내의 플랜지, 밸브 등의 이음새 및 저장탱크의 균열 등에서 발생되는 원료, 중간재, 제품가스의 누출 유무와 누출량을 확인하는 것은 안전 관점이나 경제적 관점에서 매우 중요하다. 광학가스이미지 기술은 누출 유무를 확인하는데 사용되고 있으나 누출량을 표시하지 않는다. 일부기기는 검출 가능한 가스에 대한 색상 구분과 농도에 따른 색상의 진함으로 나타내고 있다. 따라서 OGI영상에서 유출량의 정량화에 대한 연구가 필요하다. 본 실험적 연구는 광학가스이미지로 부터 유출량의 정량표시에 관한 것이다. 2 차원의 OGI영상으로 3 차원에 분포되어 있는 누출가스 양을 추정하기 위하여 몬테카를로 확률기법을 적용하였다. 산출면적 기준은 가로(2.54 cm), 세로(2.54 cm)의 2 차원의 OGI영상 점의 수에 대해 3 차원의 가스 분포 유출량과의 상관관계계수를 구하니 그 평균값이 0.980이었다. OGI영상의 이러한 데이터 표를 이용하여 역으로 유출량을 추정한 결과 유량계 측정값과 일치도가 높음을 확인했다.

Keywords

References

  1. ME., Regulations of the investigation and calculation coefficient of chemical substance emissions, Notification of ME., Seoul, (2014)
  2. KOGAS-Tech., Korea Gas Technology corporation, 2017.01., www.kogas-tech.co.kr
  3. FLIR, Gas detection systems, GF320 Infrared camera, 2017.01. www.flirkorea.com
  4. Telops, Innovative Infrared Imaging, Telops Company, Canada, (2015)
  5. Zazzeri, G., Lowry, D., Fisher, R. E., France, J. L., Lanoiselle , M., Nisbet, E. G. "Plume mapping and isotopic characterisation of anthropogenic methane sources", Atmospheric Environment, 110, 151-162, (2015) https://doi.org/10.1016/j.atmosenv.2015.03.029
  6. Safitri, A., "Infrared optical imaging techniques for gas visualization and measurement", A&M Univ. Dissertation, (2011)
  7. Naoya K., Chihiro T., Takabumi F., "Propane gas leak detection by infrared absorption using carbon infrared emitter and infrared camera", Yokohama National Univ. NDT&E international, 44(1), 57-60, (2011) https://doi.org/10.1016/j.ndteint.2010.09.006
  8. Kottegoda, N. T., Natale, L., Raiteri, E., "Monte Carlo Simulation of rainfall hyetographs for analysis and design", Journal of Hydrology, 519, 1-11, (2014) https://doi.org/10.1016/j.jhydrol.2014.06.041
  9. Palisade, @RISK, advanced risk analysis for spreadsheets, Palisade Corp, New York, (2005)
  10. Kelby, S., Adobe Photoshop CC Book for Digital Photographers, NewRiders, Indiana, (2014)
  11. Bang, S. W., to lean properly Matlab, Hanbit Academy, Seoul, (2016)
  12. Rea, L. M., Parker, R. A., Designing & onduction Survey Research A Comprehensive Guide, 3rd ed., Jossey-Bass, San Francisco, (2005)