DOI QR코드

DOI QR Code

A novel method for the vibration optimisation of structures subjected to dynamic loading

  • Munk, David J. (AMME, The University of Sydney) ;
  • Vio, Gareth A. (AMME, The University of Sydney) ;
  • Steven, Grant P. (AMME, The University of Sydney)
  • 투고 : 2015.07.29
  • 심사 : 2016.01.07
  • 발행 : 2017.03.25

초록

The optimum design of structures with frequency constraints is of great importance in the aeronautical industry. In order to avoid severe vibration, it is necessary to shift the fundamental frequency of the structure away from the frequency range of the dynamic loading. This paper develops a novel topology optimisation method for optimising the fundamental frequencies of structures. The finite element dynamic eigenvalue problem is solved to derive the sensitivity function used for the optimisation criteria. An alternative material interpolation scheme is developed and applied to the optimisation problem. A novel level-set criteria and updating routine for the weighting factors is presented to determine the optimal topology. The optimisation algorithm is applied to a simple two-dimensional plane stress plate to verify the method. Optimisation for maximising a chosen frequency and maximising the gap between two frequencies are presented. This has the application of stiffness maximisation and flutter suppression. The results of the optimisation algorithm are compared with the state of the art in frequency topology optimisation. Test cases have shown that the algorithm produces similar topologies to the state of the art, verifying that the novel technique is suitable for frequency optimisation.

키워드

참고문헌

  1. Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct. Optim., 1(4), 193-202. https://doi.org/10.1007/BF01650949
  2. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topology in structural design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  3. Bendsoe, M.P. and Olhoff, N. (1985), "A method of design against vibration resonance of beams and shafts", Optim. Control Appl. Meth., 6(3), 191-200. https://doi.org/10.1002/oca.4660060302
  4. Bendsoe, M.P. and Sigmund, O. (1999), "Material interpolation schemes in topology optimization", Arch. Appl. Mech, 69(9-10), 635-654. https://doi.org/10.1007/s004190050248
  5. Bendsoe, M.P. and Sigmund, O. (2003), Topology Optimization Theory, Methods and Applications, 1st Edition, Springer.
  6. Bisplinghoff, R. L. and Ashley, H. (1962), Principles of Aeroelasticity, 1st Edition, Wiley, New York.
  7. Blevins, R.D. (2001), Flow-Induced Vibration, 2nd Edition, Krieger Publishing Company.
  8. Diaz, A.R. and Kikuchi, N. (1992), "Solutions to shape and topology eigenvalue optimization problems using a homogenization method", J. Numer. Meth. Eng., 35, 1487-1502. https://doi.org/10.1002/nme.1620350707
  9. Diaz, A.R., Lipton, R. and Soto, C.A. (1994), "A new formulation of the problem of optimum reinforcement of reissner-midlin plates", Comput. Meth. Appl. Mech. Eng., 123(1), 121-139. https://doi.org/10.1016/0045-7825(94)00777-K
  10. Du, J. and Olhoff, N. (2007), "Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps", Struct. Multidiscip. Optim., 34(2), 91-110. https://doi.org/10.1007/s00158-007-0101-y
  11. Grandhi, R.V. (1993), "Structural optimization with frequency constraints-a review", AIAA J., 31(12), 2296-2303. https://doi.org/10.2514/3.11928
  12. Huang, X. and Xie, Y.M. (2010), Evolutionary Topology Optimization of Continuum Structures, 1st Edition, John Wiley and Sons.
  13. Huang, X., Zuo, Z.H. and Xie, Y.M. (2010), "Evolutionary topological optimization of vibrating continuum structures for natural frequencies", Eng. Comput., 88(5), 357-364.
  14. Jensen, J.S. and Pedersen, N.L. (2006), "On maximal eigenfrequency separation in two-material structures", J. Sound Vib., 289(4), 967-986. https://doi.org/10.1016/j.jsv.2005.03.028
  15. Kosaka, I. and Swan, C.C. (1999), "A symmetry reduction method for continuum structural topology optimization", Comput. Struct., 70(1), 47-61. https://doi.org/10.1016/S0045-7949(98)00158-8
  16. Krog, L.A. (1996), "Layout optimization of disk, plate, and shell structures", Technical Report, University of Denmark.
  17. Krog, L.A. and Olhoff, N. (1999), "Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives", Comput. Struct., 72(4), 535-563. https://doi.org/10.1016/S0045-7949(98)00326-5
  18. Ma, Z.D., Cheng, H.C. and Kikuchi, N. (1994), "Structural design for obtaining desired eigenfrequencies by using the topology and shape optimization method", Comput. Syst. Eng., 5(1), 77-89. https://doi.org/10.1016/0956-0521(94)90039-6
  19. Ma, Z.D., Kikuchi, N. and Cheng, H.C. (1995), "Topological design for vibrating structures", Comput. Meth. Appl. Mech. Eng., 121(1), 259-280. https://doi.org/10.1016/0045-7825(94)00714-X
  20. Ma, Z.D., Kikuchi, N., Cheng, H.C. and Hagiwara, I. (1993), "Topology and shape optimization methods for structural dynamic problems", Optim. Des. Adv. Mater., Elsevier Science Publishers, Amsterdam, 247-261.
  21. Munk, D.J., Vio, G.A. and Steven, G.P. (2015), "Topology and shape optimization methods using evolutionary algorithms: a review", Struct. Multidisc. Optim., 52(3), 613-631. https://doi.org/10.1007/s00158-015-1261-9
  22. Olhoff, N. (1976), "Optimization of vibrating beams with respect to higher order natural frequencies", J. Struct. Mech., 4(1), 87-122. https://doi.org/10.1080/03601217608907283
  23. Olhoff, N. (1977), "Maximizing higher order eigenfrequencies of beams with constraints on the design geometry", J. Struct. Mech., 5(2), 107-134. https://doi.org/10.1080/03601217708907308
  24. Olhoff, N. and Parbery, R. (1984), "Designing vibrating beams and rotating shafts for maximum difference between adjacent natural frequencies", J. Solid. Struct., 20(1), 63-75. https://doi.org/10.1016/0020-7683(84)90076-3
  25. Panda, C. and Venkatasubramani, S.R.P. (2009), "Aeroelasticity-in general and flutter phenomenon", Proceedings of the Second International Conference on Emerging Trends in Engineering and Technology, ICETET-09.
  26. Patel, N.M., Tillotson, D., Renaud, J.E., Tover, A. and Izui, K. (2008), "Comparative study of topology optimization techniques", AIAA J., 46(8), 1963-1975. https://doi.org/10.2514/1.31053
  27. Pedersen, N.L. (2000), "Maximization of eigenvalues using topology optimization", Struct. Multidisc. Optim., 20(1), 2-11. https://doi.org/10.1007/s001580050130
  28. Rubio, W.M., Paulino, G.H. and Silva, E.C.M. (2011), "Tailoring vibration mode shapes using topology optimization and functionally graded material concepts", Smart Mater. Struct., 20(2), 025009. https://doi.org/10.1088/0964-1726/20/2/025009
  29. Saleem, W., Yuqing, F. and Yunqiao, W. (2008), "Application of topology optimization and manufacturing simulations-a new trend in design of aircraft components", Proceedings of the International Multi Conference of Engineers and Computer Scientists, Vol. II, IMECS, Hong Kong.
  30. Sigmund, O. and Maute, K. (2013), "Topology optimization approaches-a comparative review", Struct. Multidisc. Optim., 48(6), 1031-1055. https://doi.org/10.1007/s00158-013-0978-6
  31. Sigmund, O. and Petersson, J. (1998), "Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima", Struct. Optim., 16(1), 68-75. https://doi.org/10.1007/BF01214002
  32. Tenek, L.H. and Hagiwara, I. (1993), "Static and vibrational shape and topology optimization using homogenization and mathematical programming", Comput. Meth. Appl. Mech. Eng., 109(1), 143-154. https://doi.org/10.1016/0045-7825(93)90229-Q
  33. Tong, L. and Lin, J. (2011), "Structural topology optimisation with implicit design variable optimality and algorithm", Finite Elem. Anal. Des., 47(8), 922-932. https://doi.org/10.1016/j.finel.2011.03.004
  34. Vasista, S. and Tong, L. (2013), "Topology-optimized design and testing of a pressure-driven morphingaerofoil trailing-edge structure", AIAA J., 51(8), 1898-1907. https://doi.org/10.2514/1.J052239
  35. Vasista, S. and Tong, L. (2014), "Topology optimisation via the moving iso-surface threshold method: Implementation and application", Aeronautic. J., 118(1201), 315-342. https://doi.org/10.1017/S0001924000009143
  36. Von Karman, T. (2005), "Collapse of the Tacoma narrows bridge", Reson., 10(8), 97-102. https://doi.org/10.1007/BF02866750
  37. Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comput. Struct., 49(5), 885-896. https://doi.org/10.1016/0045-7949(93)90035-C
  38. Xie, Y.M. and Steven, G.P. (1994), "A simple approach to structural frequency optimization", Comput. Struct., 53(6), 1487-1491. https://doi.org/10.1016/0045-7949(94)90414-6
  39. Xie, Y.M. and Steven, G.P. (1996), "Evolutionary structural optimization for dynamic problems", Comput. Struct., 58(6), 1067-1073. https://doi.org/10.1016/0045-7949(95)00235-9
  40. Xie, Y.M. and Steven, G.P. (1997), Evolutionary Structural Optimization, 1st Edition, Springer.
  41. Yang, X.Y., Xie, Y.M., Steven, G.P. and Querin, O.M. (1999), "Topology optimization for frequencies using an evolutionary method", J. Struct. Eng., 125(12), 1432-1438. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1432)
  42. Zhao, C., Steven, G.P. and Xie, Y.M. (1995), "Evolutionary natural frequency optimization of two dimensional structures with nonstructural lumped masses", Technical Report, Finite Element Analysis Research Centre, The University of Sydney.
  43. Zhao, C., Steven, G.P. and Xie, Y.M. (1996), "Evolutionary natural frequency optimization of thin plate bending vibration problems", Struct. Optim., 11(3-4), 244-251. https://doi.org/10.1007/BF01197040
  44. Zwillinger, D. (2003), CRC Standard Mathematical Tables and Formulae, Chapman and Hall/CRC Press: Boca Raton, FL, U.S.A.