DOI QR코드

DOI QR Code

A novel story on rock slope reliability, by an initiative model that incorporated the harmony of damage, probability and fuzziness

  • Wang, Yajun (School of Maritime and Civil Engineering, Zhejiang Ocean University)
  • Received : 2015.11.28
  • Accepted : 2016.10.24
  • Published : 2017.02.25

Abstract

This study aimed to realize the creation of fuzzy stochastic damage to describe reliability more essentially with the analysis of harmony of damage conception, probability and fuzzy degree of membership in interval [0,1]. Two kinds of fuzzy behaviors of damage development were deduced. Fuzzy stochastic damage models were established based on the fuzzy memberships functional and equivalent normalization theory. Fuzzy stochastic damage finite element method was developed as the approach to reliability simulation. The three-dimensional fuzzy stochastic damage mechanical behaviors of Jianshan mine slope were analyzed and examined based on this approach. The comprehensive results, including the displacement, stress, damage and their stochastic characteristics, indicate consistently that the failure foci of Jianshan mine slope are the slope-cutting areas where, with the maximal failure probability 40%, the hazardous Domino effects will motivate the neighboring rock bodies' sliding activities.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. ASTM E1570-11 (2011), Standard practice for computed tomographic (CT) examination, American Society for Testing and Materials (ASTM International); West Conshohocken, PA, USA.
  2. ASTM D7070-08 (2008), Standard test methods for creep of rock core under constant stress and temperature, American Society for Testing and Materials (ASTM International); West Conshohocken, PA, USA.
  3. ASTM D7012 (2014), Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures, American Society for Testing and Materials (ASTM International); West Conshohocken, PA, USA.
  4. Bolton, M.D., Nakata, Y. and Cheng, Y.P. (2008), "Micro- and macro-mechanical behavior of DEM crushable materials", Geotechnique, 58(6), 471-480. https://doi.org/10.1680/geot.2008.58.6.471
  5. Bulleit, W.M. (2004), "Stochastic damage models for wood structural elements". Structures - A Structural Engineering Odyssey, Structures 2001 - Proceedings of the 2001 Structures Congress and Exposition, Washington ,D.C., USA, June, pp. 1-9. http://dx.doi.org/10.1061/40558(2001)183 [On CD-ROM]
  6. Chowdhury, R.N., Tang, W.H. and Sidi, I. (1987), "Reliability model of progressive slope failure", Geotechnique, 37(4), 467-481. https://doi.org/10.1680/geot.1987.37.4.467
  7. Dzenis, Y.A. (1993), "Stochastic damage evolution in textile laminates", Compos. Manuf., 4(4), 187-193. https://doi.org/10.1016/0956-7143(93)90003-Q
  8. Dzenis, Y.A. (1996), "Stochastic damage evolution modeling in laminates", J. Thermoplastic Compos. Mater., 9(1), 21-34. https://doi.org/10.1177/089270579600900103
  9. Farkas, L., Moens, D., Vandepitte, D. and Desmet, W. (2010), "Fuzzy finite element analysis based on reanslysis technique", Struct. Safety, 32(6), 442-448. https://doi.org/10.1016/j.strusafe.2010.04.004
  10. Gao, Y.F., Wu, D., Zhang, F., Lei, G.H. Qin, H.Y. and Qiu, Y. (2016), "Limit analysis of 3D Rock slope stability with non-linear failure criterion", Geomech. Eng., Int. J., 10(1), 59-76. https://doi.org/10.12989/gae.2016.10.1.059
  11. Hearndon, J.L., Potirniche, G,P., Parker, D., Cuevas, P.M., Rinehart, H., Wang, P.T. and Horstemeyer, M.F. (2008), "Monitoring structural damage of components using an effective modulus approach", Theor. Appl. Fract. Mech., 50(1), 23-29. https://doi.org/10.1016/j.tafmec.2008.04.002
  12. Ihara, C. amd Tanaka, T. (2000), "Stochastic damage accumulation model for crack initiation in high-cycle fatigue", Fatigue Fract. Eng. Mater. Struct., 23(5), 375-380. https://doi.org/10.1046/j.1460-2695.2000.00308.x
  13. Jaeger, J.C. (1971), "Friction of rocks and stability of rock slopes", Geotechnique, 21(2), 97-134. https://doi.org/10.1680/geot.1971.21.2.97
  14. Ju, J.W. and Tseng, K.H. (1995), "An improved two-dimensional micro- mechanical theory for brittle solids with randomly located interacting microcracks", Int. J. Damage Mech., 4(1), 23-57. https://doi.org/10.1177/105678959500400103
  15. Mahdavifar, M.R. (2000), "Fuzzy information processing in landslide hazard zonation and preparing the computer system", Landslides Res., 2, 993-998.
  16. Pine, R.J., Owen, D.R.J., Coggan, J.S. and Rance, J.M. (2007), "A new discrete fracture modelling approach for rock masses", Geotechnique, 57(9), 757-766. https://doi.org/10.1680/geot.2007.57.9.757
  17. Rezaei, M., Monjezi, M. and Varjani, A.Y. (2011), "Development of a fuzzy model to predict flyrock in surface mining", Safety Sci., 49(2), 298-305. https://doi.org/10.1016/j.ssci.2010.09.004
  18. Rigatos, G. and Zhang, Q. (2009), "Fuzzy model validation using the local statistical approach", Fuzzy Sets Syst., 160(7), 882-904. https://doi.org/10.1016/j.fss.2008.07.008
  19. Rinaldi, A., Kajcinovic, D. and Mastilovic, S. (2007), "Statistical damage mechanics and extreme value theory", Int. J. Damage Mech., 16(1), 57-76. https://doi.org/10.1177/1056789507060779
  20. Schuster, M.J., Juang, C.H., Roth, M.J.S. and Rosowsky, D.V. (2008), "Reliability analysis of building serviceability problems caused by excavation", Geotechnique, 58(9), 743-749. https://doi.org/10.1680/geot.2008.58.9.743
  21. Silberschmidt, V.V. (1998), "Dynamics of stochastic damage evolution", Int. J. Damage Mech., 7(1), 84-98. https://doi.org/10.1177/105678959800700104
  22. Silberschmidt, V.V. and Chabochej, L. (1994), "Effect of stochasticity on the damage accumulation in solids", Int. J. Damage Mech., 3(1), 57-70. https://doi.org/10.1177/105678959400300103
  23. Terzaghi, K. (1962a), "Measurement of stress in rock", Geotechnique, 12(2), 105-124. https://doi.org/10.1680/geot.1962.12.2.105
  24. Terzaghi, K. (1962b), "Stability of steep slopes on hard unweathered rock", Geotechnique, 12(4), 251-270. https://doi.org/10.1680/geot.1962.12.4.251
  25. Vili, P., Andrej, Z., Jovan, T. and Ivan, P. (2014), "Comparison of three different methods for determination of damage in solid materials", Mater. Des., 56, 872-877. https://doi.org/10.1016/j.matdes.2013.11.015
  26. Wang, Y.J. (2012), "Super gravity dam generalized damage study", Adv. Mater. Res., 479-481, 421-425. https://doi.org/10.4028/www.scientific.net/AMR.479-481.421
  27. Yang, X.L. and Pan, Q.J. (2015), "Three dimensional seismic and static stability of Rock slopes", Geomech. Eng., Int. J., 8(1), 97-111. https://doi.org/10.12989/gae.2015.8.1.097
  28. Zeitoun, D.G. and Baker, R. (1992), "A stochastic approach for settlement predictions of shallow foundations", Geotechnique, 42(4), 617-629. https://doi.org/10.1680/geot.1992.42.4.617
  29. Zhang, W.H. and Valliappan, S. (1998a), "Continuum damage mechanics theory and application, part I, theory", Int. J. Damage Mech., 7(3), 250-273. https://doi.org/10.1177/105678959800700303
  30. Zhang, W.H. and Valliappan, S. (1998b), "Continuum damage mechanics theory and application, part II, application", Int. J. Damage Mech., 7(3), 274-297. https://doi.org/10.1177/105678959800700304
  31. Zhang, W.H. and Valliappan, S. (1990a), "Analysis of random anisotropic damage mechanics problems of rock mass, part I, probabilistic simulation", Rock Mech. Rock Eng., 23(2), 91-112. https://doi.org/10.1007/BF01020395
  32. Zhang, W.H. and Valliappan, S. (1990b), "Analysis of random anisotropic damage mechanics problems of rock mass, part II, statistical estimation", Rock Mech. Rock Eng., 23(4), 241-259. https://doi.org/10.1007/BF01043306
  33. Zhao, L.H., Cao, J.Y., Zhang, Y.B. and Luo, Q. (2015), "Effect of hydraulic distribution on the stability of a plane slide Rock slope under the nonlinear Barton-Bandis failure criterion", Geomech. Eng., Int. J., 8(3), 391-414. https://doi.org/10.12989/gae.2015.8.3.391