DOI QR코드

DOI QR Code

CHARACTERIZATIONS OF CENTRALIZERS AND DERIVATIONS ON SOME ALGEBRAS

  • He, Jun (Department of Mathematics East China University of Science and Technology) ;
  • Li, Jiankui (Department of Mathematics East China University of Science and Technology) ;
  • Qian, Wenhua (Research Center for Operator Algebras Department of Mathematics East China Normal University)
  • Received : 2016.04.19
  • Published : 2017.03.01

Abstract

A linear mapping ${\phi}$ on an algebra $\mathcal{A}$ is called a centralizable mapping at $G{\in}{\mathcal{A}}$ if ${\phi}(AB)={\phi}(A)B= A{\phi}(B)$ for each A and B in $\mathcal{A}$ with AB = G, and ${\phi}$ is called a derivable mapping at $G{\in}{\mathcal{A}}$ if ${\phi}(AB)={\phi}(A)B+A{\phi}(B)$ for each A and B in $\mathcal{A}$ with AB = G. A point G in A is called a full-centralizable point (resp. full-derivable point) if every centralizable (resp. derivable) mapping at G is a centralizer (resp. derivation). We prove that every point in a von Neumann algebra or a triangular algebra is a full-centralizable point. We also prove that a point in a von Neumann algebra is a full-derivable point if and only if its central carrier is the unit.

Keywords

References

  1. G. An and J. Li, Characterizations of linear mappings through zero products or zero Jordan products, Electron. J. Linear Algebra 31 (2016), 408-424. https://doi.org/10.13001/1081-3810.3090
  2. R. An, J. Hou, Characterizations of derivations on triangular rings: Additive maps derivable at idempotents, Linear Algebra Appl. 431 (2009), no. 5-7, 1070-1080. https://doi.org/10.1016/j.laa.2009.04.005
  3. M. Bresar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 1, 9-21. https://doi.org/10.1017/S0308210504001088
  4. J. Cuntz, On the continuity of semi-norms on operator algebras, Math. Ann. 220 (1976), no. 2, 171-183. https://doi.org/10.1007/BF01351703
  5. K. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series 191, 1988.
  6. A. Essaleh, M. Peralta, and M. Ramirez, Weak-local derivations and homomorphisms on C*-algebras, arxiv:1411.4795
  7. J. Hou and X. Qi, Additive maps derivable at some points on J-subspace lattice algebras, Linear Algebra Appl. 429 (2008), no. 8-9, 1851-1863. https://doi.org/10.1016/j.laa.2008.05.013
  8. F. Gilfeather and R. Moore, Isomorphisms of certain CSL algebras, J. Func. Anal. 67 (1986), no. 2, 264-291. https://doi.org/10.1016/0022-1236(86)90039-X
  9. R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras, Academic Press Inc., 1983.
  10. T. Lee and C. Liu, Partially defined ${\sigma}$-derivations on semisimple Banach algebras, Studia Math. 190 (2009), no. 2, 193-202. https://doi.org/10.4064/sm190-2-7
  11. J. Li and Z. Pan, Annihilator-preserving maps, multipliers, and local derivations, Linear Algebra Appl. 432 (2010), no. 1, 5-13. https://doi.org/10.1016/j.laa.2009.06.002
  12. J. Li, Z. Pan, and H. Xu, Characterizations of isomorphisms and derivations of some algebras, J. Math. Anal. Appl. 332 (2007), no. 2, 1314-1322. https://doi.org/10.1016/j.jmaa.2006.10.071
  13. J. Li and J. Zhou, Characterizations of Jordan derivations and Jordan homomorphisms, Linear Multilinear Algebra 59 (2011), no. 2, 193-204. https://doi.org/10.1080/03081080903304093
  14. F. Lu, Characterizations of derivations and Jordan derivations on Banach algebras, Linear Algebra Appl. 430 (2009), no. 8-9, 2233-2239. https://doi.org/10.1016/j.laa.2008.11.025
  15. F. Lu, Lie derivations of certain CSL algebras, Israel J. Math. 155 (2006), 149-156. https://doi.org/10.1007/BF02773953
  16. Z. Pan, Derivable maps and derivational points, Linear Algebra Appl. 436 (2012), no. 11, 4251-4260. https://doi.org/10.1016/j.laa.2012.01.027
  17. X. Qi, Characterization of centralizers on rings and operator algebras, Acta Math. Sin. (Chin. Ser.) 56 (2013), no. 4, 459-468.
  18. X. Qi and J. Hou, Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 7, 1245-1256. https://doi.org/10.1007/s10114-013-2068-5
  19. W. Xu, R. An, and J. Hou, Equivalent characterization of centralizers on B(H), Acta Math. Sinica (Engl. Ser.) 32 (2016), 1113-1120. https://doi.org/10.1007/s10114-016-5610-4
  20. J. Zhu, All-derivable points of operator algebras, Linear Algebra Appl. 427 (2007), no. 1, 1-5. https://doi.org/10.1016/j.laa.2007.05.049