DOI QR코드

DOI QR Code

Effect of Gas Channel/Rib Width in Solid Oxide Fuel Cells

고체산화물 연료전지에서 가스채널/리브 폭의 영향에 관한 연구

  • 전동협 (동국대학교 기계부품시스템공학과) ;
  • 신동열 (엘티씨 기술개발연구소) ;
  • 유광현 (엘티씨 기술개발연구소) ;
  • 송락현 (에너지기술연구원 연료전지연구센타)
  • Received : 2016.09.26
  • Accepted : 2016.12.21
  • Published : 2017.02.01

Abstract

Using the computational fluid dynamics (CFD) technique, we performed a numerical simulation in anodesupported solid oxide fuel cell (SOFC). The effect of gas channel/rib width on the cell performance and temperature uniformity was investigated in planar type SOFC. The open source CFD toolbox, OpenFOAM, was used as a numerical analysis tool. As a result, the effect of gas channel/rib width on the cell performance and temperature uniformity was not significant if the oxygen depletion is not occurring. On the other hand, the usage of a wide rib and operation at high current density may lead to performance degradation due to oxygen depletion.

전산유체해석(CFD) 기법을 이용하여 음극 지지체형 고체산화물 연료전지(SOFC)에 대한 수치해석을 수행하였다. 평판형 구조의 SOFC 에서 가스채널과 리브폭 변화에 따른 성능과 온도균일성에 관한 연구가 이루어졌다. 전산해석 툴로서는 공개소스 전산유체해석 툴박스인 OpenFOAM 을 이용하였다. 수치해석결과, 산소고갈이 일어나지 않는 범위 내에서 가스채널과 리브폭의 증가는 성능과 온도 균일성에 크게 영향을 미치지 않음을 알 수 있었다. 하지만 넓은 리브폭의 사용과 고전류밀도에서의 작동은 산소고갈로 인한 성능저하의 가능성이 있음을 확인하였다.

Keywords

References

  1. Minh, N.Q., 1993, "Ceramic Fuel Cells," J. Am. Ceram. Soc., Vol. 76, pp. 563-588. https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. Larminie, L. and Dicks, A., 2000, Fuel Cell Systems Explained, Wiley & Sons, Chichester.
  3. Berteil, A., Nucci, B. and Nicolella, C., 2013, "Microstructural Modeling for Prediction of Transport Properties and Electrochemical Performance in SOFC Composite Electrode," Chem. Eng. Sci., Vol. 101, pp. 175-190. https://doi.org/10.1016/j.ces.2013.06.032
  4. Wei, S.-S., Wang, T.-H. and Wu, J.-S., 2014, "Numerical Modeling of Interconnect Flow Channel Design and Thermal Stress Analysis of a Planar Anode-supported Solid Oxide Fuel Cell Stack," Energy, Vol. 69, pp. 553-561. https://doi.org/10.1016/j.energy.2014.03.052
  5. $OpenFOAM^{(R)}$, 2016, User and Programmer's Guide, OpenCFD Ltd., Available From http://www.openfoam.com
  6. Beale, S.B., Choi, H-.W., Pharoah, J.G., Roth, H.K., Jasak, H. and Jeon, D.H., 2015, "Open-source Computational Model of a Solid Oxide Fuel Cell," Comp. Phy. Comm., In press, doi:10.1016/j.cpc.2015.10.007.
  7. Dong, W., Beale, S.B., and Boersma, R.J., 2001, "Computational Modeling of Solid Oxide Fuel Cells," Proc. Conf. CFD Soc. Canada, waterloo, ON. pp. 382-387.
  8. Jeon, D.H., Beale, S.B., Choi, H.-W., Pharoah, J.G., and Roth, H., 2010, "Computational Study of Heat And Mass Transfer Issues in Solid Oxide Fuel Cells," In Proc. of 21st International Symposium on Transport Phenomena, Taiwan, Nov.
  9. Le, A.E., Beale, S.B. and Pharoah, J.G., 2015, "Validation of a Solid Oxide Fuel Cell Model on the International Energy Agency Benchmark Case with Hydrogen Fuel," Fuel Cells, Vol. 15, pp. 27-41. https://doi.org/10.1002/fuce.201300269