DOI QR코드

DOI QR Code

Figure of Merit of SnO2/Ag/Nb2O5/SiO2/SnO2 Transparent Conducting Multilayer Film Deposited on Glass Substrate

Glass 위에 증착된 SnO2/Ag/Nb2O5/SiO2/SnO2 다층 투명전도막의 성능지수

  • Kim, Jin-Gyun (Department of Materials Engineering, Chungbuk National University) ;
  • Lee, Sang-Don (Department of Electrical Engineering, Gangneung-Wonju National University) ;
  • Jang, Gun-Eik (Department of Materials Engineering, Chungbuk National University)
  • 김진균 (충북대학교 재료공학과) ;
  • 이상돈 (강릉원주대학교 전기공학과) ;
  • 장건익 (충북대학교 재료공학과)
  • Received : 2016.11.18
  • Accepted : 2016.12.30
  • Published : 2017.02.01

Abstract

$SnO_2/Ag/Nb_2O_5/SiO_2/SnO_2$ multilayer films were prepared on glass substrate by sequential using RF/DC magnetron sputtering at room temperature. The influence of top $SnO_2$ layer thickness on optical and electrical properties of the multilayer films was investigated. Experimentally measured results exhibit transmittances over 84.3 ~ 85.8% at 550 nm wavelength. As the top $SnO_2$ layer thickness increased from 40 to 55 nm, the sheet resistance (Rs) increased from 5.81 to $6.94{\Omega}/sq$. The Haacke's figure of merit (FOM) calculated for the samples with various $SnO_2$ layer thicknesses was a maximum at 45 nm ($35.3{\times}10^{-3}{\Omega}^{-1}$).

Keywords

References

  1. Y. Wang, T. Brezesinski, M. Antonietti, and B. Smarsly, ACS Nano, 3, 1373 (2009). [DOI: https://doi.org/10.1021/nn900108x]
  2. F. Rohlfing, D. Brezesinski, T. Rathousky, J. Feldhoff, A. Oekermann, T. Waga, M. Smarsly, and B. Ady, Mater., 18, 2980 (2006).
  3. F. J. Yusta, M. L. Hitchman, and H, Shamlian, J. Mater. Chem., 7, 1421 (1997). [DOI: https://doi.org/10.1039/a608525c]
  4. T. P. Chow, M. Ghezzo, and B. J. Baliga, J. ElecTrochem. Soc., 129, 1040 (1982). [DOI: https://doi.org/10.1149/1.2124012]
  5. J. G. Kim, S. M. Yoon, and G. E. Jang, Journal of Ceramic Processing Research, 17, 80 (2016).
  6. J. G. Kim and G. E. Jang, Jounal of Ceramic Processing Research, 17, 103 (2016).
  7. A. Dhar and T. L. Alford, J. Appl. Phys., 112, 103113 (2012). https://doi.org/10.1063/1.4767662
  8. A. Indluru and T. L. Alford, J. Appl. Phys., 105, 123528 (2009). [DOI: https://doi.org/10.1063/1.3153977]
  9. V. Sharma, S. Singh, K. Asokan, and K. Sachdev, Nuclear Instruments and Methods in Physics Research B, 379, 141 (2016). [DOI: https://doi.org/10.1016/j.nimb.2016.04.059]
  10. Y. Guo, W. Cheng, J. Jiang, S. Zuo, F. Shi, and J. Chu, Vacuum, 131, 164 (2016). [DOI: https://doi.org/10.1016/j.vacuum.2016.06.014]
  11. J. H. Kim, Y. J. Moon, S. K. Kim, Y. Z. Yoo, and T. Y. Seong, Ceramics International, 41, 14805 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2015.08.001]
  12. G. Haacke, J. Appl. Phys., 47, 4086 (1976). [DOI: https://doi.org/10.1063/1.323240]
  13. S. H. Yu, C. H. Jia, H. W. Zheng, L. H. Ding, and W. F. Zhang, Materials Letters, 85, 68 (2012). [DOI: https://doi.org/10.1016/j.matlet.2012.06.108]
  14. A. Bou, P. Torchio, D. Barakel, F. Thierry, P. Y. Thoilon, and M. Ricci, Proc. of SPIE, 8987, 898706 (2014). [DOI: https://doi.org/10.1117/12.2039067]