DOI QR코드

DOI QR Code

ZnO-Zn2BiVO6-Co3O4 세라믹스의 액상소결과 전기적 특성

Liquid Phase Sintering and Electrical Properties of ZnO-Zn2BiVO6-Co3O4 Ceramics

  • 홍연우 (한국세라믹기술원 전자소재부품센터) ;
  • 김유비 (한국세라믹기술원 전자소재부품센터) ;
  • 백종후 (한국세라믹기술원 전자소재부품센터) ;
  • 조정호 (한국세라믹기술원 전자소재부품센터) ;
  • 정영훈 (한국세라믹기술원 전자소재부품센터) ;
  • 윤지선 (한국세라믹기술원 전자소재부품센터) ;
  • 박운익 (한국세라믹기술원 전자소재부품센터)
  • Hong, Youn-Woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, You-Bi (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong-Hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong-Ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young-Hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji-Sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Woon-Ik (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2016.11.10
  • 심사 : 2016.11.30
  • 발행 : 2017.02.01

초록

This study focuses on the effects of doping $Zn_2BiVO_6$ and $Co_3O_4$ on the sintering and electrical properties of ZnO; where, ZZ consists of 0.5 mol% $Zn_2BiVO_6$ in ZnO, and ZZCo consists of 1/3 mol% $Co_3O_4$ in ZZ. As ZnO was sintered at about $800^{\circ}C$, the liquid phases, which are composed of $Zn_2BiVO_6$ and $Zn_2BiVO_6$-rich phases, were found to be segregated at the grain boundaries of sintered ZZ and ZZCo, respectively, which demonstrates that $V_o^{\cdot}$(0.33~0.36 eV) are formed as dominant defects according to the analysis of admittance spectroscopy. As $Co_3O_4$ is doped to ZZ, the resistivity of ZnO decreases to ~38%, while donor density ($N_d$), interface state density ($N_t$), and barrier height (${\Phi}_b$) increase twice higher than those of ZZ, according to C-V characteristics. This result harbingers that ZZCo and its derivative compositions will open the gate for ZnO to be applied as more progressive varistors in the future, as well as the advantageous opportunity of manufacturing ZnO chip varistors at lower sintering temperatures below $900^{\circ}C$.

키워드

참고문헌

  1. C. J. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures (Elsevier, Amsterdam, 2006) p. 17.
  2. D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999). [DOI: https://doi.org/10.1111/j.1151-2916.1999.tb01793.x]
  3. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). [DOI: https://doi.org/10.1111/j.1151-2916.1990.tb05232.x]
  4. S. Hirose, Y. Yamamoto, and H. Niimi, J. Appl. Phys., 104, 013701 (2008). [DOI: https://doi.org/10.1063/1.2949262]
  5. K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989). [DOI: https://doi.org/10.1109/57.44606]
  6. R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987). [DOI: https://doi.org/10.1146/annurev.ms.17.080187.001503]
  7. M. Inada and M. Matsuoka, Advances in Ceramics (American Ceramic Society, Columbus, 1984) p. 91.
  8. J. Kim, T. K. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc., 72, 1390 (1989). [DOI: https://doi.org/10.1111/j.1151-2916.1989.tb07659.x]
  9. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 876 (2011).
  10. M. Mirzayi and M. H. Hekmatshoar, Physica B, 414, 50 (2013). [DOI: https://doi.org/10.1016/j.physb.2013.01.020]
  11. C. W. Nahm, J. Am. Ceram. Soc., 94, 3227 (2011). [DOI: https://doi.org/10.1111/j.1551-2916.2011.04812.x]
  12. ACerS-NIST Phase Equilibria Diagrams CD-ROM Database Version 3.3, Fig. 13290 $ZnO-Bi_2O_3-V_2O_5$ phase diagram (2010).
  13. M. Bosacka, M. Kurzawa, I. R. Himmel, and I. Szkoda, Thermochimica Acta, 428, 51 (2005). [DOI: https://doi.org/10.1016/j.tca.2004.09.025]
  14. F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). [DOI: https://doi.org/10.1088/0268-1242/5/2/001]
  15. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 882 (2011).
  16. K. Mukae, K. Tsuda, and I. Nagasawa, J. Appl. Phys., 50, 4475 (1979). [DOI: https://doi.org/10.1063/1.326411]
  17. L. F. Luo, Appl. Phys. Lett., 36, 570 (1980). [DOI: https://doi.org/10.1063/1.91549]
  18. A. Smith, J. F. Baumard, and P. Abelard, J. Appl. Phys., 65, 5119 (1989). [DOI: https://doi.org/10.1063/1.343190]
  19. Y. W. Hong, Y. J. Lee, S. K. Kim, J. H. Paik, and J. H. Kim, Electron. Mater. Lett., 10, 903 (2014). [DOI: https://doi.org/10.1007/s13391-014-3331-3]
  20. F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). [DOI: https://doi.org/10.1088/0268-1242/5/2/001]
  21. L. M. Levinson and H. R. Philipp, J. Appl. Phys., 47, 3116 (1976). [DOI: https://doi.org/10.1063/1.323059]
  22. H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.
  23. B. S. Chiou and M. C. Chung, J. Electron. Mater., 20, 885 (1991). [DOI: https://doi.org/10.1007/BF02665979]
  24. Y. W. Hong, Y. J. Lee, S. K. Kim, and J. H. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 38 (2013).