DOI QR코드

DOI QR Code

A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams

  • Bouafia, Khadra (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Kaci, Abdelhakim (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de genie civil) ;
  • Houari, Mohammed Sid Ahmed (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de genie civil) ;
  • Benzair, Abdelnour (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes)
  • 투고 : 2016.02.03
  • 심사 : 2016.10.07
  • 발행 : 2017.02.25

초록

In this paper, size dependent bending and free flexural vibration behaviors of functionally graded (FG) nanobeams are investigated using a nonlocal quasi-3D theory in which both shear deformation and thickness stretching effects are introduced. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present theory incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a hyperbolic variation of all displacements through the thickness without using shear correction factor. The material properties of FG nanobeams are assumed to vary through the thickness according to a power law. The neutral surface position for such FG nanobeams is determined and the present theory based on exact neutral surface position is employed here. The governing equations are derived using the principal of minimum total potential energy. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and dynamic responses of the FG nanobeam are discussed in detail. A detailed numerical study is carried out to examine the effect of material gradient index, the nonlocal parameter, the beam aspect ratio on the global response of the FG nanobeam. These findings are important in mechanical design considerations of devices that use carbon nanotubes.

키워드

참고문헌

  1. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  2. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  3. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  4. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  5. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  6. Asghari, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2010), "A nonlinear Timoshenko beam formulation based on the modified couple stress theory", Int. J. Eng. Sci., 48, 1749-1761. https://doi.org/10.1016/j.ijengsci.2010.09.025
  7. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  8. Ball, P. (2001), "Roll up for the revolution", Nature (London), 414, 142-144. https://doi.org/10.1038/35102721
  9. Baughman, RH, Zakhidov, AA. and de Heer, WA. (2002), "Carbon nanotubes the route towards applications", Science, 297, 787-792. https://doi.org/10.1126/science.1060928
  10. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. : Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  11. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4). 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  12. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  13. Benguediab, S., Semmah, A., Larbi Chaht, F. Mouaz, S. and Tounsi, A. (2014a), "An investigation on the characteristics of bending, buckling and vibration of nanobeams via nonlocal beam theory", Int. J. Comput. Meth., 11(6), 1350085. https://doi.org/10.1142/S0219876213500850
  14. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014b), "Chirality and scale rffects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. : Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020
  15. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  16. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  17. Bensattalah, T., Daouadji, T.H., Zidour, M., Tounsi, A. and Adda Bedia, E.A. (2016), "Investigation of thermal and chirality effects on vibration of single-walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories", Mech. Compos. Mater., [In press].
  18. Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N., and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys, D: Appl, Phys., 41, 225404. https://doi.org/10.1088/0022-3727/41/22/225404
  19. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  20. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  21. Bodily, B.H. and Sun, C.T. (2003), "Structural and equivalent continuum properties of single walled carbon nanotubes", Int. J. Mater. Prod. Technol., 18, 381-397. https://doi.org/10.1504/IJMPT.2003.002498
  22. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  23. Bouderba, B., Houari, M.S.A. and Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  24. Boukhari, A., Ait Atmane, H., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  25. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  26. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  27. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory ", Steel Compos. Struct., 21(6). 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
  28. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  29. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  30. Bousahla, A.A., Benyoucef, S. Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  31. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193
  32. Chong, ACM, Yang, F, Lam, DCC, Tong, P. (2001), "Torsion and bending of micron-scaled structures", J Mater Res, 16(04), 1052-1058. https://doi.org/10.1557/JMR.2001.0146
  33. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  34. Ebrahimi, F. and Salari, E. (2016), "Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams", Adv. Nano Res., 4(3), 197-228. https://doi.org/10.12989/anr.2016.4.3.197
  35. Ebrahimi, F. and Barati, R. (2016a), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., 4(3), 229-249. https://doi.org/10.12989/anr.2016.4.3.229
  36. Ebrahimi, F. and Barati, R. (2016b), "An exact solution for buckling analysis of embedded piezo- electro-magnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  37. Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., 4(2), 85-111. https://doi.org/10.12989/anr.2016.4.2.085
  38. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
  39. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl Math. Comput., 218, 7406-7420.
  40. Eltaher, M. A., Abdelrahman, A. A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529.
  41. Eringen, AC. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  42. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  43. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
  44. Fleck, N.A, Muller, G.M., Ashby, M.F. and Hutchinson, JW. (1994), "Strain gradient plasticity: theory and experiment", Acta. Metall. Mater., 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9
  45. Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett, 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
  46. Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solids Struct., 48, 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002
  47. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  48. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. - ASCE, 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  49. Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda Bedia, EA. (2008), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E., 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
  50. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three -unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., (Accepted).
  51. Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Physica E, 43, 1602-1604. https://doi.org/10.1016/j.physe.2011.05.002
  52. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 135007.
  53. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  54. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  55. Lee, Z., Ophus, C., Fischer, L., Nelson-Fitzpatrick, N., Westra, K.L., Evoy, S. et al. (2006), "Metallic NEMS components fabricated from nanocomposite Al-Mo films", Nanotechnology, 17(12), 3063-3070. https://doi.org/10.1088/0957-4484/17/12/042
  56. Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74, 81. https://doi.org/10.1016/0022-460X(81)90493-4
  57. Li, C. and Chou, T.W. (2003a), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40, 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
  58. Li, C, Chou, TW. (2003b), "Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators", Phys Rev B, 68, 073405. https://doi.org/10.1103/PhysRevB.68.073405
  59. Lim, C.W. and Wang, C.M. (2007), "Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams", J. Appl. Phys., 101, 054312. https://doi.org/10.1063/1.2435878
  60. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44, 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034
  61. Lu, C., Wu, D. and Chen, W. (2011), "Non-linear responses of nano-scale FGM films including the effects of surface energies", IEEE T. Nanotechnol, 10(6), 1321-1327. https://doi.org/10.1109/TNANO.2011.2139223
  62. Maachou, M., Zidour, M., Baghdadi, H., Ziane, N. and Tounsi, A. (2011), "A nonlocal Levinson beam model for free vibration analysis of zigzag single-walled carbon nanotubes including thermal effects", Solid State Commun., 151, 1467-1471. https://doi.org/10.1016/j.ssc.2011.06.038
  63. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
  64. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  65. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793
  66. Mouaici, F., Benyoucef, S., Ait Atmane, H. and Tounsi, A. (2016), "Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory", Wind Struct., 22(4), 429-454. https://doi.org/10.12989/was.2016.22.4.429
  67. Mustapha, K.B. and Zhong, Z.W. (2010a), "The thermo-mechanical vibration of a single-walled carbon nanotube studied using the Bubnov-Galerkin method", Physica E., 43, 375-381. https://doi.org/10.1016/j.physe.2010.08.012
  68. Mustapha, K.B. and Zhong, Z.W. (2010b), "Free transverse vibration of an axially loaded non-prismatic single-walled carbon nanotube embedded in a two-parameter elastic medium", Comput. Mater. Sci., 50, 742-751. https://doi.org/10.1016/j.commatsci.2010.10.005
  69. Narendar, S. and Gopalakrishnan, S. (2011), "Nonlocal wave propagation in rotating nanotube", Results Phys., 1, 17-25. https://doi.org/10.1016/j.rinp.2011.06.002
  70. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater, 49(6), 641-650. https://doi.org/10.1007/s11029-013-9380-0
  71. Nix, W.D. and Gao, H. (1998), "Indentation size effects in crystalline materials: A law for strain gradient plasticity", J. Mech. Phys. Solids, 46, 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
  72. Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41, 421-433. https://doi.org/10.1080/15397734.2013.763713
  73. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41 (2003) 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  74. Pijaudier-Cabot, G. and Bazant, ZP. (1987), "Nonlocal damage theory", J. Eng. Mech.- ASCE, 113, 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
  75. Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials", Proceedings of the 3rd International conference on micro- and nanosystems. DETC2009-86254:539-544.
  76. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.031
  77. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59, 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008
  78. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103, 023511. https://doi.org/10.1063/1.2833431
  79. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288. https://doi.org/10.1016/j.ijengsci.2007.04.004
  80. Reddy, J.N. (2002), "Energy principles and variational methods in applied mechanics", John Wiley & Sons Inc.
  81. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech.- ASME, 51, 745. https://doi.org/10.1115/1.3167719
  82. Roque, C.M.C., Ferreira, A.J.M. and Reddy, J.N. (2011), "Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method", Int. J. Eng. Sci., 49, 976-984. https://doi.org/10.1016/j.ijengsci.2011.05.010
  83. Said, A., Ameur, M., Bousahla, A.A. and Tounsi, A. (2014), "A new simple hyperbolic shear deformation theory for functionally graded plates resting on Winkler-Pasternak elastic foundations", Int. J. Comput. Met., 11(6), 1350098. https://doi.org/10.1142/S0219876213500989
  84. Semmah, A., Tounsi, A., Zidour, M., Heireche, H. and Naceri, M. (2015), "Effect of chirality on critical buckling temperature of a zigzag single-walled carbon nanotubes using nonlocal continuum theory", Fullerenes, Nanotubes Carbon Nanostructures, 23, 518-522. https://doi.org/10.1080/1536383X.2012.749457
  85. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech, 94, 195-200. https://doi.org/10.1007/BF01176650
  86. Song, J., Shen, J. and Li, X.F. (2010), "Effects of initial axial stress on waves propagating in carbon nanotubes using a generalized nonlocal model", Comput .Mater Sci., 49, 518-523. https://doi.org/10.1016/j.commatsci.2010.05.043
  87. Stolken, J.S. and Evans, A.G. (1998), "A microbend test method for measuring the plasticity length scale", Acta Mater., 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
  88. Tounsi, A, Semmah, A. and Bousahla, A.A. (2013a), "Thermal buckling behavior of nanobeams using an efficient higher-order nonlocal beam theory", J. Nanomech. Micromech. - ASCE, 3, 37-42. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000057
  89. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013b), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  90. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013c), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  91. Tounsi, A., Heireche, H., Berrabah, H.M., Benzair, A. and Boumia, L. (2008), "Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field", J. Appl. Phys., 104, 104301. https://doi.org/10.1063/1.3018330
  92. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., (Accepted).
  93. Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro- and nanostructures", Phys. Lett. A, 363, 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
  94. Wang, Q., Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phys. Lett. A, 357, 130-135. https://doi.org/10.1016/j.physleta.2006.04.026
  95. Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", Mater. Sci. Forum., 492, 55-60.
  96. Yaghoobi, H. and Feraidoon, A. (2010), "Influence of neutral surface position on deflection of functionally graded beam under uniformly distributed load", World Appl. Sci. J., 10(3), 337-341.
  97. Yoon, J., Ru, C.Q. and Mioduchowski, A. (2003), "Vibration of an embedded multiwall carbon nanotube", Compos. Sci. Technol., 63, 1533-1542. https://doi.org/10.1016/S0266-3538(03)00058-7
  98. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  99. Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B., 70, 205430. https://doi.org/10.1103/PhysRevB.70.205430
  100. Zhang, Y, Liu, G, Han, X. (2005a), "Transverse vibrations of double-walled carbon nanotubes under compressive axial load", Phys Lett A., 340, 258-266. https://doi.org/10.1016/j.physleta.2005.03.064
  101. Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005b), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys . Rev. B., 71, 195404. https://doi.org/10.1103/PhysRevB.71.195404
  102. Zhang, Y.Q., Liu, G.R. and Han, X. (2006), "Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure", Phys. Lett. A, 349, 370-376. https://doi.org/10.1016/j.physleta.2005.09.036
  103. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  104. Zidour, M., Benrahou, K.H., Semmah, A., Naceri, M., Belhadj, H.A. and Bakhti, K. (2012), "The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory", Comput. Mater. Sci., 51, 252-260. https://doi.org/10.1016/j.commatsci.2011.07.021
  105. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0

피인용 문헌

  1. Nonlinear atomic vibrations and structural phase transitions in strained carbon chains vol.138, 2017, https://doi.org/10.1016/j.commatsci.2017.07.004
  2. Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electro-thermal environment vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0922-5
  3. Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.052
  4. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium vol.47, pp.6, 2017, https://doi.org/10.1007/s13538-017-0524-x
  5. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes vol.514, 2017, https://doi.org/10.1016/j.physb.2017.03.030
  6. Dynamic buckling of polymer–carbon nanotube–fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments 2017, https://doi.org/10.1177/1099636217743288
  7. Buckling analysis of tapered nanobeams using nonlocal strain gradient theory and a generalized differential quadrature method vol.4, pp.6, 2017, https://doi.org/10.1088/2053-1591/aa7111
  8. Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method 2018, https://doi.org/10.1016/j.aej.2017.06.001
  9. Effects of neutral surface deviation on nonlinear resonance of embedded temperature-dependent functionally graded nanobeams vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.058
  10. A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate vol.168, 2017, https://doi.org/10.1016/j.compstruct.2017.02.090
  11. Damping vibration behavior of visco-elastically coupled double-layered graphene sheets based on nonlocal strain gradient theory 2017, https://doi.org/10.1007/s00542-017-3529-z
  12. Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory vol.133, pp.2, 2018, https://doi.org/10.1140/epjp/i2018-11868-4
  13. Thermal stress and deformation analysis of a size-dependent curved nanobeam based on sinusoidal shear deformation theory 2017, https://doi.org/10.1016/j.aej.2017.07.003
  14. Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM 2017, https://doi.org/10.1080/19475411.2017.1377312
  15. Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0955-9
  16. Influence of various temperature distributions on critical speed and vibrational characteristics of rotating cylindrical microshells with modified lengthscale parameter vol.132, pp.6, 2017, https://doi.org/10.1140/epjp/i2017-11551-4
  17. Nonlocal Timoshenko Beam for Vibrations of Magnetically Affected Inclined Single-Walled Carbon Nanotubes as Nanofluidic Conveyors vol.131, pp.6, 2017, https://doi.org/10.12693/APhysPolA.131.1439
  18. Dynamic modeling of porous heterogeneous micro/nanobeams vol.132, pp.12, 2017, https://doi.org/10.1140/epjp/i2017-11754-7
  19. Nonlinear bending of a two-dimensionally functionally graded beam vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.087
  20. Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories vol.67, 2018, https://doi.org/10.1016/j.euromechsol.2017.09.004
  21. Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.008
  22. Size-dependent thermoelastic analysis of a functionally graded nanoshell vol.32, pp.03, 2018, https://doi.org/10.1142/S0217984918500331
  23. Forced vibration analysis of functionally graded porous deep beams vol.186, 2018, https://doi.org/10.1016/j.compstruct.2017.12.013
  24. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams vol.112, 2017, https://doi.org/10.1016/j.spmi.2017.09.010
  25. Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501009
  26. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates vol.132, pp.10, 2017, https://doi.org/10.1140/epjp/i2017-11666-6
  27. Post-fire mechanical performance of modular GFRP multicellular slabs with prefabricated fire resistant panels 2018, https://doi.org/10.1016/j.compositesb.2018.01.034
  28. Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory 2019, https://doi.org/10.1177/0954406218756451
  29. Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory pp.1537-6532, 2020, https://doi.org/10.1080/15376494.2018.1444216
  30. Fracture problems, vibration, buckling, and bending analyses of functionally graded materials: A state-of-the-art review including smart FGMS pp.1548-0046, 2018, https://doi.org/10.1080/02726351.2017.1410265
  31. Temperature and Strain Rate Dependent Mechanical Properties of a Square Nickel Plate with Different Shaped Central Cracks: A Molecular Dynamics Study vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.32
  32. Buckling Analysis of Orthotropic Nanoscale Plates Resting on Elastic Foundations vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
  33. On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0669-4
  34. Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings pp.1435-5663, 2018, https://doi.org/10.1007/s00366-018-0646-y
  35. Vibration Analysis of Nano Beam Using Differential Transform Method Including Thermal Effect vol.54, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
  36. The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates vol.39, pp.9, 2018, https://doi.org/10.1007/s10483-018-2367-9
  37. Forced vibration analysis of cracked nanobeams vol.40, pp.8, 2018, https://doi.org/10.1007/s40430-018-1315-1
  38. Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams vol.24, pp.8, 2018, https://doi.org/10.1007/s00542-018-3771-z
  39. Vibration and buckling analysis of a rotary functionally graded piezomagnetic nanoshell embedded in viscoelastic media vol.29, pp.11, 2018, https://doi.org/10.1177/1045389X18770856
  40. Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1487612
  41. Smart electrical and magnetic stability analysis of exponentially graded shear deformable three-layered nanoplate based on nonlocal piezo-magneto-elasticity theory pp.1530-7972, 2018, https://doi.org/10.1177/1099636218760667
  42. Free vibration analysis of a piezoelectric curved sandwich nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal elasticity theories vol.133, pp.5, 2018, https://doi.org/10.1140/epjp/i2018-12015-1
  43. Nonlinear vibration analysis of different types of functionally graded beams using nonlocal strain gradient theory and a two-step perturbation method vol.134, pp.1, 2019, https://doi.org/10.1140/epjp/i2019-12446-0
  44. A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment pp.1539-7742, 2019, https://doi.org/10.1080/15397734.2018.1557529
  45. Modal participation of fixed–fixed single-walled carbon nanotube with vacancies pp.2008-6695, 2019, https://doi.org/10.1007/s40091-019-0222-8
  46. Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
  47. A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams vol.62, pp.6, 2017, https://doi.org/10.12989/sem.2017.62.6.695
  48. A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
  49. Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory vol.63, pp.3, 2017, https://doi.org/10.12989/sem.2017.63.3.401
  50. Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading vol.20, pp.2, 2017, https://doi.org/10.12989/cac.2017.20.2.229
  51. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates vol.63, pp.5, 2017, https://doi.org/10.12989/sem.2017.63.5.585
  52. Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage vol.6, pp.3, 2017, https://doi.org/10.12989/amr.2017.6.3.257
  53. An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities vol.13, pp.3, 2017, https://doi.org/10.12989/eas.2017.13.3.255
  54. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2017, https://doi.org/10.12989/gae.2017.13.3.385
  55. Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2017, https://doi.org/10.12989/sss.2017.20.3.369
  56. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2017, https://doi.org/10.12989/scs.2017.25.2.157
  57. A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams vol.64, pp.2, 2017, https://doi.org/10.12989/sem.2017.64.2.145
  58. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  59. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2017, https://doi.org/10.12989/scs.2017.25.3.257
  60. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  61. A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation vol.13, pp.5, 2017, https://doi.org/10.12989/eas.2017.13.5.509
  62. A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2017, https://doi.org/10.12989/sem.2017.64.4.391
  63. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2017, https://doi.org/10.12989/sem.2017.64.6.737
  64. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2017, https://doi.org/10.12989/scs.2017.25.6.693
  65. A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2017, https://doi.org/10.12989/scs.2017.25.6.717
  66. An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2017, https://doi.org/10.12989/scs.2017.25.6.735
  67. A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates vol.68, pp.1, 2018, https://doi.org/10.12989/sem.2018.68.1.103
  68. Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2017, https://doi.org/10.12989/sem.2018.65.5.621
  69. Forced vibration analysis of cracked functionally graded microbeams vol.6, pp.1, 2017, https://doi.org/10.12989/anr.2018.6.1.039
  70. Post-buckling responses of a laminated composite beam vol.26, pp.6, 2017, https://doi.org/10.12989/scs.2018.26.6.733
  71. A novel four variable refined plate theory for wave propagation in functionally graded material plates vol.27, pp.1, 2018, https://doi.org/10.12989/scs.2018.27.1.109
  72. Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2017, https://doi.org/10.12989/sem.2018.66.1.027
  73. Improved HSDT accounting for effect of thickness stretching in advanced composite plates vol.66, pp.1, 2017, https://doi.org/10.12989/sem.2018.66.1.061
  74. Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects vol.21, pp.4, 2018, https://doi.org/10.12989/cac.2018.21.4.431
  75. Three dimensional dynamic response of functionally graded nanoplates under a moving load vol.66, pp.2, 2017, https://doi.org/10.12989/sem.2018.66.2.249
  76. A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2017, https://doi.org/10.12989/sss.2018.21.4.397
  77. Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2017, https://doi.org/10.12989/gae.2018.14.6.519
  78. Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.311
  79. Free vibration of FGM plates with porosity by a shear deformation theory with four variables vol.66, pp.3, 2017, https://doi.org/10.12989/sem.2018.66.3.353
  80. Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2017, https://doi.org/10.12989/gae.2018.15.1.711
  81. Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation vol.21, pp.5, 2018, https://doi.org/10.12989/cac.2018.21.5.569
  82. Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis vol.27, pp.4, 2017, https://doi.org/10.12989/scs.2018.27.4.465
  83. Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell vol.27, pp.4, 2018, https://doi.org/10.12989/scs.2018.27.4.479
  84. Three dimensional finite elements modeling of FGM plate bending using UMAT vol.66, pp.4, 2018, https://doi.org/10.12989/sem.2018.66.4.487
  85. Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2017, https://doi.org/10.12989/scs.2018.27.5.567
  86. A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2017, https://doi.org/10.12989/scs.2018.27.5.599
  87. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2017, https://doi.org/10.12989/anr.2018.6.2.147
  88. A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
  89. Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter vol.28, pp.1, 2017, https://doi.org/10.12989/scs.2018.28.1.013
  90. A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates vol.28, pp.1, 2017, https://doi.org/10.12989/scs.2018.28.1.099
  91. Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field vol.67, pp.1, 2017, https://doi.org/10.12989/sem.2018.67.1.021
  92. Technical and economical assessment of applying silica nanoparticles for construction of concrete structures vol.22, pp.1, 2018, https://doi.org/10.12989/cac.2018.22.1.117
  93. Size-dependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory vol.22, pp.1, 2017, https://doi.org/10.12989/sss.2018.22.1.027
  94. Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory vol.28, pp.3, 2017, https://doi.org/10.12989/scs.2018.28.3.381
  95. A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation vol.67, pp.3, 2017, https://doi.org/10.12989/sem.2018.67.3.219
  96. Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2017, https://doi.org/10.12989/sem.2018.67.3.291
  97. Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads vol.15, pp.2, 2017, https://doi.org/10.12989/eas.2018.15.2.113
  98. Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2017, https://doi.org/10.12989/sem.2018.67.5.517
  99. Effect of homogenization models on stress analysis of functionally graded plates vol.67, pp.5, 2018, https://doi.org/10.12989/sem.2018.67.5.527
  100. Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
  101. Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory vol.15, pp.3, 2017, https://doi.org/10.12989/eas.2018.15.3.285
  102. A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates vol.22, pp.3, 2017, https://doi.org/10.12989/sss.2018.22.3.303
  103. Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods vol.15, pp.4, 2017, https://doi.org/10.12989/eas.2018.15.4.361
  104. Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory vol.15, pp.4, 2018, https://doi.org/10.12989/eas.2018.15.4.369
  105. An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory vol.27, pp.4, 2017, https://doi.org/10.12989/was.2018.27.4.247
  106. A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams vol.27, pp.4, 2017, https://doi.org/10.12989/was.2018.27.4.269
  107. Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position vol.5, pp.6, 2017, https://doi.org/10.12989/aas.2018.5.6.691
  108. Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory vol.22, pp.5, 2017, https://doi.org/10.12989/sss.2018.22.5.527
  109. Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation vol.27, pp.5, 2018, https://doi.org/10.12989/was.2018.27.5.311
  110. A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations vol.30, pp.1, 2017, https://doi.org/10.12989/scs.2019.30.1.013
  111. Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory vol.6, pp.1, 2019, https://doi.org/10.12989/aas.2019.6.1.001
  112. Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method vol.69, pp.2, 2017, https://doi.org/10.12989/sem.2019.69.2.205
  113. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2017, https://doi.org/10.12989/was.2019.28.1.019
  114. Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory vol.28, pp.1, 2017, https://doi.org/10.12989/was.2019.28.1.049
  115. Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load vol.7, pp.1, 2017, https://doi.org/10.12989/acc.2019.7.1.051
  116. Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress vol.23, pp.2, 2017, https://doi.org/10.12989/sss.2019.23.2.141
  117. Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2017, https://doi.org/10.12989/sem.2019.69.5.511
  118. Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT vol.7, pp.2, 2017, https://doi.org/10.12989/anr.2019.7.2.089
  119. Vibration analysis of different material distributions of functionally graded microbeam vol.69, pp.6, 2017, https://doi.org/10.12989/sem.2019.69.6.637
  120. Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers vol.23, pp.3, 2017, https://doi.org/10.12989/sss.2019.23.3.215
  121. Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model vol.57, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/jnanor.57.136
  122. Participation Factor and Vibration of Carbon Nanotube with Vacancies vol.57, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/jnanor.57.158
  123. A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams vol.57, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/jnanor.57.175
  124. Buckling behavior of rectangular plates under uniaxial and biaxial compression vol.70, pp.1, 2019, https://doi.org/10.12989/sem.2019.70.1.113
  125. A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.325
  126. Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT vol.7, pp.3, 2017, https://doi.org/10.12989/anr.2019.7.3.191
  127. Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate vol.16, pp.5, 2017, https://doi.org/10.12989/eas.2019.16.5.601
  128. Influence of shear preload on wave propagation in small-scale plates with nanofibers vol.70, pp.4, 2017, https://doi.org/10.12989/sem.2019.70.4.407
  129. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate vol.18, pp.2, 2017, https://doi.org/10.12989/gae.2019.18.2.161
  130. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2017, https://doi.org/10.12989/scs.2019.31.5.503
  131. Conformable solution of fractional vibration problem of plate subjected to in-plane loads vol.28, pp.6, 2019, https://doi.org/10.12989/was.2019.28.6.347
  132. Stability analysis of embedded graphene platelets reinforced composite plates in thermal environment vol.134, pp.7, 2019, https://doi.org/10.1140/epjp/i2019-12581-6
  133. Vibration characteristics of zigzag and chiral functionally graded material rotating carbon nanotubes sandwich with ring supports vol.233, pp.16, 2017, https://doi.org/10.1177/0954406219855095
  134. Nonlocal Buckling Analysis of Composite Curved Beams Reinforced with Functionally Graded Carbon Nanotubes vol.24, pp.15, 2017, https://doi.org/10.3390/molecules24152750
  135. Free Vibration Analysis of Triclinic Nanobeams Based on the Differential Quadrature Method vol.9, pp.17, 2017, https://doi.org/10.3390/app9173517
  136. Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites vol.8, pp.3, 2017, https://doi.org/10.12989/amr.2019.8.3.219
  137. Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment vol.8, pp.3, 2019, https://doi.org/10.12989/amr.2019.8.3.237
  138. Size-dependent vibration analysis of laminated composite plates vol.7, pp.5, 2017, https://doi.org/10.12989/anr.2019.7.5.337
  139. Vibration analysis of nonlocal porous nanobeams made of functionally graded material vol.7, pp.5, 2019, https://doi.org/10.12989/anr.2019.7.5.351
  140. Nonlinear forced vibrations of sandwich smart nanobeams with two-phase piezo-magnetic face sheets vol.134, pp.10, 2019, https://doi.org/10.1140/epjp/i2019-12806-8
  141. Frequency response of initially deflected nanotubes conveying fluid via a nonlinear NSGT model vol.72, pp.1, 2017, https://doi.org/10.12989/sem.2019.72.1.071
  142. Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.113
  143. Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT vol.24, pp.4, 2017, https://doi.org/10.12989/cac.2019.24.4.347
  144. A Non-Linear Spring Model for Predicting Modal Behavior of Oscillators Built from Double Walled Carbon Nanotubes vol.60, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/jnanor.60.21
  145. A Non-Linear Spring Model for Predicting Modal Behavior of Oscillators Built from Double Walled Carbon Nanotubes vol.60, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/jnanor.60.21
  146. The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory vol.7, pp.6, 2017, https://doi.org/10.12989/anr.2019.7.6.443
  147. Dynamic modeling of a multi-scale sandwich composite panel containing flexible core and MR smart layer vol.134, pp.12, 2017, https://doi.org/10.1140/epjp/i2019-12662-6
  148. A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
  149. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2017, https://doi.org/10.12989/was.2019.29.6.371
  150. Transfer matrix formulations and single variable shear deformation theory for crack detection in beam-like structures vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.109
  151. Hygrothermal postbuckling analysis of smart multiscale piezoelectric composite shells vol.135, pp.2, 2017, https://doi.org/10.1140/epjp/s13360-020-00137-w
  152. A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.197
  153. A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads vol.7, pp.1, 2020, https://doi.org/10.12989/smm.2020.7.1.027
  154. Buckling response of smart plates reinforced by nanoparticles utilizing analytical method vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.001
  155. A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
  156. Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading vol.8, pp.3, 2017, https://doi.org/10.12989/anr.2020.8.3.203
  157. Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories vol.74, pp.2, 2020, https://doi.org/10.12989/sem.2020.74.2.175
  158. Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2017, https://doi.org/10.12989/sss.2020.25.4.409
  159. Two new indices for structural optimization of free vibration suppression vol.61, pp.5, 2020, https://doi.org/10.1007/s00158-019-02451-z
  160. Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects vol.25, pp.5, 2017, https://doi.org/10.12989/sss.2020.25.5.619
  161. Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects vol.25, pp.5, 2017, https://doi.org/10.12989/sss.2020.25.5.619
  162. Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM vol.9, pp.3, 2020, https://doi.org/10.12989/csm.2020.9.3.201
  163. Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2017, https://doi.org/10.12989/csm.2020.9.3.281
  164. Dynamic behavior of axially functionally graded simply supported beams vol.25, pp.6, 2017, https://doi.org/10.12989/sss.2020.25.6.669
  165. Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes vol.36, pp.6, 2017, https://doi.org/10.12989/scs.2020.36.6.643
  166. Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions vol.36, pp.6, 2017, https://doi.org/10.12989/scs.2020.36.6.689
  167. Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam vol.26, pp.3, 2017, https://doi.org/10.12989/sss.2020.26.3.361
  168. Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes vol.36, pp.4, 2017, https://doi.org/10.1007/s00366-019-00790-5
  169. Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment vol.11, pp.7, 2017, https://doi.org/10.3390/app11073250
  170. Wave dispersion of nanobeams incorporating stretching effect vol.31, pp.4, 2017, https://doi.org/10.1080/17455030.2019.1607623
  171. Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2017, https://doi.org/10.12989/anr.2021.11.1.055
  172. Mass density effect on vibration of zigzag and chiral SWCNTs: A theoretical study vol.23, pp.6, 2017, https://doi.org/10.1177/1099636220906257