DOI QR코드

DOI QR Code

Unsteady RANS computations of turbulent flow in a high-amplitude meandering channel

고진폭 만곡수로에서 난류흐름의 비정상 RANS 수치모의

  • Lee, Seungkyu (Department of Civil Engineering, Gangneung-Wonju National University) ;
  • Paik, Joongcheol (Department of Civil Engineering, Gangneung-Wonju National University)
  • 이승규 (강릉원주대학교 토목공학과) ;
  • 백중철 (강릉원주대학교 토목공학과)
  • Received : 2016.12.05
  • Accepted : 2017.01.05
  • Published : 2017.02.28

Abstract

Turbulent flow structure in the high amplitude meandering channel is complex due to secondary recirculation with helicoidal motions and shear layers formed by flow separation from the curved sidewall. In this work, the secondary flow and the superelevation of the water surface produced in the high-amplitude Kinoshita channel are reproduced by the unsteady Reynolds-averaged Navier-Stokes (RANS) computations using the VOF technique for resolving the variation of water surface elevation and three statistical turbulence models ($k-{\varepsilon}$, RNG $k-{\varepsilon}$, $k-{\omega}$ SST). The numerical results computed by a second-order accurate finite volume method are compared with an existing experimental measurement. Among applied turbulence models, $k-{\omega}$ SST model relatively well predicts overall distribution of the secondary recirculation in the Kinoshita channel, while all three models yield similar prediction of water superelevation transverse slope. The secondary recirculation driven by the radial acceleration in the upstream bend affects the flow structure in the downstream bend, which yields a pair of counter-rotating vortices at the bend apex. This complex flow pattern is reasonably well reproduced by the $k-{\omega}$ SST model. Both $k-{\varepsilon}$ based models fail to predict the clockwise-rotating vortex between a pair of counter-rotating vortices which was observed in the experiment. Regardless of applied turbulence models, the present computations using the VOF method appear to well reproduce the superelevation of water surface through the meandering channel.

만곡수로에서의 흐름 구조는 나선형 운동을 갖는 이차 재순환 흐름 그리고 만곡부 측벽으로부터 발생하는 흐름분리로 인한 전단층 등으로 복잡하다. 이 연구에서는 3개의 통계학적 난류모형($k-{\varepsilon}$, RNG $k-{\varepsilon}$, $k-{\omega}$ SST) 그리고 자유수면 변동 해석을 위한 VOF 기법을 적용한 비정상 Reynolds-averaged Navier-Stokes (RANS) 계산을 수행하여 고진폭 만곡수로인 키노시타(Kinoshita) 수로에서의 이차류와 편수위를 해석하였다. 2차 정확도의 유한체적법을 이용하여 구한 해석결과를 기존 수리실험 자료와 비교하여 각 난류모형의 적용성을 평가하였다. 비정상 RANS 계산에서 적용한 3개의 통계학적 난류모형의 해석 결과를 분석해 보면 키노시타 수로에서 발생하는 만곡부 편수위는 3개 모형 모두 유사하게 모의하는 한편, 전반적인 이차류 분포는 $k-{\omega}$ SST상대적으로 잘 모의하는 것으로 나타났다. 하류에 위치한 만곡부 흐름에 영향을 미쳐 국부적으로 발생한 이차류와 이전의 만곡부 중앙 수면 부근에서 발생하는 한 쌍의 이차 와류가 존재하는 현상을 관측하였으며, $k-{\omega}$ SST 난류모형은 이러한 복잡한 와류 변화를 양호하게 모의했다. $k-{\varepsilon}$ 모형을 기반으로 개발된 두 모형으로 모의한 결과에서는 실험에서 관측된 중앙 만곡부에 존재하는 두 개의 이차류 중, 시계방향 와류가 재현되지 않는다. VOF기법을 이용해서 계산한 만곡부에서의 편수위 해석결과는 적용한 모든 난류모형에 대해서 전반적으로 실험값을 양호하게 재현하는 것으로 나타났다.

Keywords

References

  1. Abad, J. D., and Garcia, M. H. (2009). "Experiments in a highamplitude Kinoshita meandering channel: 1. Implications of bend orientation on mean and turbulent flow structure." Water Resources Research, Vol. 45, W02401, doi:10.1029/2008WR007016
  2. Blanckaert, K., and Graf, W. H. (2004). "Momentum transport in sharp open channel bends." Journal of Hydraulic Engineering, Vol. 130, No. 3, pp. 186-198. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(186)
  3. Blanckaert, K., and Vriend, H. J. (2004). "Secondary flow in sharp open-channel bends." Journal of Fluid Mechanics, Vol. 498, pp. 353-380. https://doi.org/10.1017/S0022112003006979
  4. Chang, H. H. (1988). "Cause of river meandering." International Conference River Regime. Hydraulic Research Limited, Wallingford, Oxon UK. pp. 83-93.
  5. da Silva, A. M. F. (1999). "Friction factor of meandering flows." Journal of Hydraulic Engineering, Vol. 125, No. 7, pp. 779-783. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:7(779)
  6. Hickin, E. J. (1974). "The development of meanders in natural riverchannels." American Journal of Science, Vol. 274, No. 4, pp. 414-442. https://doi.org/10.2475/ajs.274.4.414
  7. Hooke, J. M. (1995). "River channel adjustment to meander cutoffs on the River Bollin and River Dane, northwest England." Geomorphology, Vol. 14, No. 3, pp. 235-253. https://doi.org/10.1016/0169-555X(95)00110-Q
  8. Ippen, A. T., Drinker, P. A., Jobin, W. R., and Shemdin O. H. (1962). "Stream dynamics and boundary shear distributions for curved trapezoidal channels." MIP Hydrodyn. Lab. Rep. 47, pp. 263-342, MIT Press, Cambridge, Mass.
  9. Jasak, H. (2009). "OpenFOAM: Open source CFD in research and industry." International Journal of Naval Architecture and Ocean Engineering, Vol. 1, No. 2, pp. 89-94. https://doi.org/10.3744/JNAOE.2009.1.2.089
  10. Julien, P. Y. (2002). River Mechanics. Cambridge University Press, Cambridge.
  11. Kinoshita, R. (1961). Investigation of channel deformation in Ishikari River, Rep. Bureau of Resources, Dept. of Science and Technology, Japan.
  12. Langbein, W. B., and Leopold, L. B. (1996). River meanders-theory of minimum variance. USGS Professional Paper 422-H, U.S. Geological Survey, Washington, D.C.
  13. Lee, D. H., Son, M., Kim, Y. D., and Kim, J. M. (2012), "Experimental study of secondary flow using real-scale experiment channel." Journal of the Korean Geomorphological Association, Vol. 19, No. 4, pp. 13-25.
  14. Menter, F., Kuntz, M., and Langtry, R. (2003). "Ten years of industrial experience with the SST turbulence model." Turbulence, Heat and Mass Transfer, Vol. 4, No. 1, pp. 625-632.
  15. Seo, I. W., Sung, K. H., Baek, K. O., and Jeong, S. J. (2004). "Experimental study on flow characteristics in meandering channel." Journal of Korea Water Resources Association, Vol. 37, No. 7. pp. 527-540. https://doi.org/10.3741/JKWRA.2004.37.7.527
  16. Seo, I. W., Lee, K. W., and Baek, K. O. (2006). "Flow structure and turbulence characteristics in meandering channel." Journal of the Korean Society of Civil Engineers, Vol. 26, No. 5B, pp. 469-479.
  17. Son, G., You, H., and Kim, D. (2014). "Feasibility calculation of FaSTMECH for 2D velocity distribution simulation in meandering channel." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 6, pp. 1753-1754. https://doi.org/10.12652/Ksce.2014.34.6.1753
  18. Son, A. L., Ryu, J. H., and Han, K. Y. (2011). "A study of flow characteristics in meandering River." Journal of Korean Society of Hazard Mitigation, Vol. 11, No. 3, pp. 191-200. https://doi.org/10.9798/KOSHAM.2011.11.3.191
  19. Whiting, P. J., and Dietrich, W. E. (1993). "Experimental studies of bed topography and flow patterns in large-amplitude meanders: 2. Mechanisms." Water Resources Research, Vol. 29, No. 11, pp. 3615-3622. https://doi.org/10.1029/93WR01756
  20. Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C. G. (1992). "Development of turbulence models for shear flows by a double expansion technique." Physics of Fluids A, Vol. 4, No. 7, pp. 1510-1520. https://doi.org/10.1063/1.858424