Acknowledgement
Supported by : Firat University BAPYB
References
- ACI 201.2R-77 (1977), Guide to Durable Concrete.
- ACI 225R-85 (1985), Guide to the Selection and Use of Hydraulic Cements.
- Akoz, F., Turker, F., Koral, S. and Yuzer, N. (1995), "Effects of sodium sulfate concentration on the sulfate resistance of mortars with and without silica fume", Cement Concrete Res., 25(6), 1360-1368. https://doi.org/10.1016/0008-8846(95)00128-Y
- Akoz, F., Turker, F., Koral, S. and Yuzer, N. (1999), "Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume", Cement Concrete Res., 29(4), 537-544. https://doi.org/10.1016/S0008-8846(98)00251-8
- Al-Amoudi, O.S.B. (1998), "Sulfate attack and reinforcement corrosion in plain and blended cements exposed to sulfate environments", Build. Environ., 33(1), 53-61. https://doi.org/10.1016/S0360-1323(97)00022-X
- Al-Amoudi, O.S.B., Maslehuddin, M. and Saadi, M.M. (1995), "Effect of magnesium sulfate and sodium sulfate on the durability performance of plain and blended cements", ACI Mater. J., 92(1), 15-24.
- Al-Amoudi, O.S.B., Rasheeduzzafar, M.M. and Abduljauwad, S.N. (1994), "Influence of chloride ions on sulphate deterioration in plain and blended cements", Mag. Concrete Res., 46(167), 113-123. https://doi.org/10.1680/macr.1994.46.167.113
- Al-Noury, S.I., Mirza, W.H. and Huq, S. (1990), "Density and strength characteristics of lightweight mortar", Cement Concrete Compos., 12(2), 79-86. https://doi.org/10.1016/0958-9465(90)90044-X
- Altun, F., Kisi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011
- ASTM C 618 (2012), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
- ASTM C1012 (2004), Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution.
- Bilim, C., Atis, C.D., Tanyildizi, H. and Karahan, O. (2009), "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Software, 40(5), 334-340. https://doi.org/10.1016/j.advengsoft.2008.05.005
- Binici, H., Aksogan, O., Cagatay, I.H., Tokyay, M. and Emsen, E. (2007), "The effect of particle size distribution on the properties of blended cements incorporating GGBFS and natural pozzolan (NP)", Pow. Technol., 177(3), 140-147. https://doi.org/10.1016/j.powtec.2007.03.033
- Brown, P.W. (1981), "An evaluation of the sulfate resistance of cements in a controlled environment", Cement Concrete Res., 11(5), 719-727. https://doi.org/10.1016/0008-8846(81)90030-2
- Chen, B.T., Chang, T.P., Shih, J.Y. and Wang, J.J. (2009), "Estimation of exposed temperature for fire-damaged concrete using support vector machine", Comput. Mater. Sci., 44(3), 913-920. https://doi.org/10.1016/j.commatsci.2008.06.017
- Cohen, M.D. and Mather, B. (1991), "Sulfate attack on concrete: Research needs", Mater. J., 88(1), 62-69.
- Cover, T.M. (1965), "Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition", Electr. Comput. IEEE Transac., 3, 326-334.
- Demir, F. (2008), "Prediction of elastic modulus of normal and high strength concrete by artificial neural networks", Constr. Build. Mater., 22(7), 1428-1435. https://doi.org/10.1016/j.conbuildmat.2007.04.004
- Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Constr. Build. Mater., 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063
- Dunstan, E.R. (1980), "A possible method for identifying fly ashes that will improve the sulfate resistance of concrete", Cement Concrete Res., 10, 20-30.
- Erdem, H. (2010), "Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks", Adv. Eng. Software, 41(2), 270-276. https://doi.org/10.1016/j.advengsoft.2009.07.006
- Felekoglu, B., Ramyar, K., Tosun, K. and Musal, B. (2006), "Sulfate resistances of different types of Turkish Portland cements by selecting the appropriate test methods", Constr. Build. Mater., 20(9), 819-823. https://doi.org/10.1016/j.conbuildmat.2005.01.048
- Gulbandilar, E. and Kocak, Y. (2016), "Application of expert systems in prediction of flexural strength of cement mortars", Comput. Concrete, 18(1), 1-16. https://doi.org/10.12989/cac.2016.18.1.001
- Hanbay, D., Turkoglu, I. and Demir, Y. (2008a), "An expert system based on wavelet decomposition and neural network for modeling Chua's circuit", Exp. Syst. Appl., 34(4), 2278-2283. https://doi.org/10.1016/j.eswa.2007.03.002
- Hanbay, D., Turkoglu, I. and Demir, Y. (2008b), "Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks", Exp. Syst. Appl., 34(2), 1038-1043. https://doi.org/10.1016/j.eswa.2006.10.030
- Hartshorn, S.A., Swamy, R.N. and Sharp, J.H. (2001), "Engineering properties and structural implications of Portland limestone cement mortar exposed to magnesium sulphate attack", Adv. Cement Res., 13(1), 31-46. https://doi.org/10.1680/adcr.2001.13.1.31
- Hassan, A.A., Abouhussien, A.A. and Mayo, J. (2014), "The use of silica-breccia as a supplementary cementing material in mortar and concrete", Constr. Build. Mater., 51, 321-328. https://doi.org/10.1016/j.conbuildmat.2013.10.075
- Haykin, S. (1994), Neural Networks, A Comprehensive Foundation College Publishing Comp. Inc.
- Hossain, K.M.A. (1999), "Performance of volcanic ash concrete in marine environment", Proceedings of the 24th OWICS Conference, Singapore, August.
- Hossain, K.M.A. and Lachemi, M. (2006), "Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment", Cement Concrete Res., 36(6), 1123-1133. https://doi.org/10.1016/j.cemconres.2006.03.010
- Inan, G., Goktepe, A.B., Ramyar, K. and Sezer, A. (2007), "Prediction of sulfate expansion of PC mortar using adaptive neuro-fuzzy methodology", Build. Environ., 42(3), 1264-1269. https://doi.org/10.1016/j.buildenv.2005.11.029
- Irassar, E.F., Bonavetti, V.L. and Gonzalez, M. (2003), "Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature", Cement Concrete Res., 33(1), 31-41. https://doi.org/10.1016/S0008-8846(02)00914-6
- Irassar, E.F., Bonavetti, V.L., Trezza, M.A. and Gonzalez, M.A. (2005), "Thaumasite formation in limestone filler cements exposed to sodium sulphate solution at 20C", Cement Concrete Compos., 27(1), 77-84. https://doi.org/10.1016/j.cemconcomp.2003.10.003
- Kalousek, G.L., Porter, L.C. and Benton, E.J. (1972), "Concrete for long-time service in sulfate environment", Cement Concrete Res., 2(1), 79-89. https://doi.org/10.1016/0008-8846(72)90025-7
- Kecman, V. (2001), "Learning and soft computing: Support vector machines, neural networks, and fuzzy logic models", MIT Press.
- Kilic, A., Atis, C.D., Yasar, E. and Ozcan, F. (2003), "Highstrength lightweight concrete made with scoria aggregate containing mineral admixtures", Cement Concrete Res., 33(10), 1595-1599. https://doi.org/10.1016/S0008-8846(03)00131-5
- Kosmatka, S.H. and Panarese, W.C. (2002), "Design and control of concrete mixtures", Skokie, IL: Portland Cement Assoc., 5420, 60077-1083.
- Lee, J.J., Kim, D.K., Chang, S.K. and Lee, J.H. (2007), "Application of support vector regression for the prediction of concrete strength", Comput. Concrete, 4, 299-316. https://doi.org/10.12989/cac.2007.4.4.299
- Lee, S.T., Hooton, R.D., Jung, H.S., Park, D.H. and Choi, C.S. (2008), "Effect of limestone filler on the deterioration of mortars and pastes exposed to sulfate solutions at ambient temperature", Cement Concrete Res., 38(1), 68-76. https://doi.org/10.1016/j.cemconres.2007.08.003
- Lee, S.T., Moon, H.Y. and Swamy, R.N. (2005), "Sulfate attack and role of silica fume in resisting strength loss", Cement Concrete Compos., 27(1), 65-76. https://doi.org/10.1016/j.cemconcomp.2003.11.003
- Manual FIP (1983), FIP Manual of Lightweight Aggregate Concrete, Surrey University Press, London, U.K.
- Mehta, P.K. (1983), "Mechanism of sulfate attack on Portland cement concrete-another look", Cement Concrete Res., 13(3), 401-406. https://doi.org/10.1016/0008-8846(83)90040-6
- Moon, H.Y., Lee, S.T. and Kim, S.S. (2003), "Sulphate resistance of silica fume blended mortars exposed to various sulphate solutions", Can. J. Civil Eng., 30(4), 625-636. https://doi.org/10.1139/l03-024
- Naik, T.R., Singh, S.S. and Hossain, M.M. (1996), "Enhancement in mechanical properties of concrete due to blended ash", Cement Concrete Res., 26(1), 49-54. https://doi.org/10.1016/0008-8846(95)00181-6
-
Nazari, A. and Riahi, S. (2011), "Computer-aided design of the effects of
$Fe_2O_3$ nanoparticles on split tensile strength and water permeability of high strength concrete", Mater. Des., 32(7), 3966-3979. https://doi.org/10.1016/j.matdes.2011.01.064 - Ouyang, C., Nanni, A. and Chang, W.F. (1988), "Internal and external sources of sulfate ions in Portland cement mortar: Two types of chemical attack", Cement Concrete Res., 18(5), 699-709. https://doi.org/10.1016/0008-8846(88)90092-0
- Ozcan, F. (2012), "Gene expression programming based formulations for splitting tensile strength of concrete", Constr. Build. Mater., 26(1), 404-410. https://doi.org/10.1016/j.conbuildmat.2011.06.039
- Plowman, C. and Cabrera, J.G. (1996), "The use of fly ash to improve the sulphate resistance of concrete", Waste Manage., 16(1), 145-149. https://doi.org/10.1016/S0956-053X(96)00055-4
- Rankovic, V., Grujovic, N., Divac, D. and Milivojevic, N. (2014), "Development of support vector regression identification model for prediction of dam structural behavior", Struct. Safety, 48, 33-39. https://doi.org/10.1016/j.strusafe.2014.02.004
- Rasheeduzzafar Al-Amoudi, O.S.B., Abduljauwad, S.N. and Maslehuddin, M. (1994), "Magnesium-sodium sulfate attack in plain and blended cements", J. Mater. Civil Eng., 6(2), 201-222. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:2(201)
- Sahmaran, M., Erdem, T.K. and Yaman, I.O. (2007), "Sulfate resistance of plain and blended cements exposed to wettingdrying and heating-cooling environments", Constr. Build. Mater., 21(8), 1771-1778. https://doi.org/10.1016/j.conbuildmat.2006.05.012
- Saridemir, M., Topcu, I.B., Ozcan, F. and Severcan, M.H. (2009), "Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic", Constr. Build. Mater., 23(3), 1279-1286. https://doi.org/10.1016/j.conbuildmat.2008.07.021
- Shafigh, P., Alengaram, U.J., Mahmud, H.B. and Jumaat, M.Z. (2013), "Engineering properties of oil palm shell lightweight concrete containing fly ash", Mater. Des., 49, 613-621. https://doi.org/10.1016/j.matdes.2013.02.004
- Shannag, M.J. and Shaia, H.A. (2003), "Sulfate resistance of highperformance concrete", Cement Concrete Compos., 25(3), 363-369. https://doi.org/10.1016/S0958-9465(02)00049-5
- Shi, X.C. and Dong, Y.F. (2011), "Support vector machine applied to prediction strength of cement in artificial intelligence", Proceedings of the 2nd International Conference on Management Science and Electronic Commerce, China, August.
- Sobhani, J., Najimi, M., Pourkhorshidi, A.R. and Parhizkar, T. (2010), "Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models", Constr. Build. Mater., 24(5), 709-718. https://doi.org/10.1016/j.conbuildmat.2009.10.037
- Sonebi, M., Cevik, A., Grunewald, S. and Walraven, J. (2016), "Modelling the fresh properties of self-compacting concrete using support vector machine approach", Constr. Build. Mater., 106, 55-64. https://doi.org/10.1016/j.conbuildmat.2015.12.035
- Spratt, B.H. (1974), "The structural use of lightweight aggregate cement mortar", Cement, Cement Mortar Assoc., 22, 57-63.
- Stark, D. (1980), Longtime Study of Concrete Durability in Sulfate Soils Sulfate Resistance of Concrete SP-77, American Concrete Institute, U.S.A.
- Taylor, H.F. (1997), Cement Chemistry, Thomas Telford.
- Topcu, I.B. and Saridemir, M. (2007), "Prediction of properties of waste AAC aggregate concrete using artificial neural network", Comput. Mater. Sci., 41(1), 117-125. https://doi.org/10.1016/j.commatsci.2007.03.010
- Topcu, I.B. and Saridemir, M. (2008a), "Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 42(1), 74-82. https://doi.org/10.1016/j.commatsci.2007.06.011
- Topcu, I.B. and Saridemir, M. (2008b), "Prediction of rubberized mortar properties using artificial neural network and fuzzy logic", J. Mater. Proc. Technol., 199(1), 108-118. https://doi.org/10.1016/j.jmatprotec.2007.08.042
- Tsivilis, S., Kakali, G., Skaropoulou, A., Sharp, J.H. and Swamy, R.N. (2003), "Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar", Cement Concrete Compos., 25(8), 969-976. https://doi.org/10.1016/S0958-9465(03)00153-7
- Turker, F., Akoz, F., Koral, S. and Yuzer, N. (1997), "Effects of magnesium sulfate concentration on the sulfate resistance of mortars with and without silica fume", Cement Concrete Res., 27(2), 205-214. https://doi.org/10.1016/S0008-8846(97)00009-4
- Uysal, M. and Tanyildizi, H. (2011), "Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network", Constr. Build. Mater., 25(11), 4105-4111. https://doi.org/10.1016/j.conbuildmat.2010.11.108
- Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer Berlag, New York, U.S.A.
-
Vuk, T., Gabrovsek, R. and Kaucic, V. (2002), "The influence of mineral admixtures on sulfate resistance of limestone cement pastes aged in cold
$MgSO_4$ solution", Cement Concrete Res., 32(6), 943-948. https://doi.org/10.1016/S0008-8846(02)00729-9 - Wang, Y.R., Yu, C.Y. and Chan, H.H. (2012), "Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models", J. Proj. Manage., 30(4), 470-478.
- Wee, T.H., Suryavanshi, A.K., Wong, S.F. and Rahman, A.K.M.A. (2000), "Sulfate resistance of concrete containing mineral admixtures", ACI Mater. J., 97(5), 536-549.
- Wilson, C. (1954), "Cement mortar ship resists sea water thirtyfour years", Cement Mort., 62, 5-12.
- Wong, G.S. and Poole, T.S. (1987), "The effect of pozzolans and slags on the sulfate resistance of hydraulic cement mortars", Spec. Publ., 100, 2121-2134.
- Yan, K. and Shi, C. (2010), "Prediction of elastic modulus of normal and high strength concrete by support vector machine", Constr. Build. Mater., 24(8), 1479-1485. https://doi.org/10.1016/j.conbuildmat.2010.01.006
- Yeh, I.C. (2007), "Modeling slump flow of concrete using secondorder regressions and artificial neural networks", Cement Concrete Compos., 29(6), 474-480. https://doi.org/10.1016/j.cemconcomp.2007.02.001
- Yu, Q.L., Spiesz, P. and Brouwers, H.J.H. (2013), "Development of cement-based lightweight composites-part 1: Mix design methodology and hardened properties", Cement Concrete Compos., 44, 17-29. https://doi.org/10.1016/j.cemconcomp.2013.03.030
- Yuvaraj, P., Murthy, A.R., Iyer, N.R., Sekar, S.K. and Samui, P. (2013), "Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams", Eng. Fract. Mech., 98, 29-43. https://doi.org/10.1016/j.engfracmech.2012.11.014
- Zarandi, M.F., Turksen, I.B., Sobhani, J. and Ramezanianpour, A.A. (2008), "Fuzzy polynomial neural networks for approximation of the compressive strength of concrete", Appl. Soft Comput., 8(1), 488-498. https://doi.org/10.1016/j.asoc.2007.02.010
- Zhang, M.H. and Gjorv, O.E. (1992), "Penetration of cement paste into lightweight aggregate", Cement Concrete Res., 22(1), 47-55. https://doi.org/10.1016/0008-8846(92)90135-I
- Zhou, Q., Wang, F. and Zhu, F. (2016), "Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems", Constr. Build. Mater., 125, 417-426. https://doi.org/10.1016/j.conbuildmat.2016.08.064
Cited by
- Prediction of the Strength Properties of Carbon Fiber-Reinforced Lightweight Concrete Exposed to the High Temperature Using Artificial Neural Network and Support Vector Machine vol.2018, 2018, https://doi.org/10.1155/2018/5140610
- Modelling the flexural strength of mortars containing different mineral admixtures via GEP and RA vol.19, pp.6, 2017, https://doi.org/10.12989/cac.2017.19.6.717
- The research on static and dynamic mechanical properties of concrete under the environment of sulfate ion and chlorine ion vol.20, pp.2, 2017, https://doi.org/10.12989/cac.2017.20.2.205
- X-ray CT monitoring of macro void development in mortars exposed to sulfate attack vol.21, pp.4, 2017, https://doi.org/10.12989/cac.2018.21.4.367
- Effects of Erosion Form and Admixture on Cement Mortar Performances Exposed to Sulfate Environment vol.10, pp.9, 2020, https://doi.org/10.3390/cryst10090774