Acknowledgement
Supported by : National Science Foundation of China, Jiangsu Province Science Foundation
References
- Bassuoni, M.T. and Nehdi, M.L. (2009), "Durability of selfconsolidating concrete to sulfate attack under combined cyclic environments and flexural loading", Cement Concrete Res., 39(3), 206-226. https://doi.org/10.1016/j.cemconres.2008.12.003
- Cao, S. (1991), "Mechanical properties of corroded concrete", J. Southeast Univ., 21(4), 89-95.
- Etse, G. and Willam, K. (1999), "Failure analysis of elastoviscoplastic material models", J. Eng. Mech., 125(1), 60-69. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:1(60)
- Faria, R., Oliver, J. and Cervera, M. (1998), "A strain-based plastic viscous-damage model for massive concrete structures", J. Solids Struct., 35(14), 1533-1558. https://doi.org/10.1016/S0020-7683(97)00119-4
- Gao, J., Yu, Z., Song, L., Wang, T. and Wei, S. (2013), "Durability of concrete exposed to sulfate attack under flexural loading and drying-wetting cycles", Constr. Build. Mater., 39, 33-38. https://doi.org/10.1016/j.conbuildmat.2012.05.033
- Grassl, P. and Jirasek, M. (2006), "Damage-plastic model for concrete failure", J. Solids Struct., 43(22-23), 7166-7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032
- Grassl, P., Lundgren, K. and Gylltoft, K. (2002), "Concrete in compression: A plasticity theory with a novel hardening law", J. Solids Struct., 39(20), 5205-5223. https://doi.org/10.1016/S0020-7683(02)00408-0
- Guneyisi, E., Gesoglu, M. and Mermerdas, K. (2010), "Strength deterioration of plain and metakaolin concretes in aggressive sulfate environments", J. Mater. Civil Eng., 22(4), 403-407. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000034
- Idiart, A.E., Lopez, C.M. and Carol, I. (2011), "Chemomechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model", Cement Concrete Compos., 33(3), 411-423. https://doi.org/10.1016/j.cemconcomp.2010.12.001
- Kalipcilar, I., Mardani, A., Sezer A. and Altun, S. (2016), "Assessment of the effect of sulfate attack on cement stabilized montmorillonite", Geomech. Eng., 10(6), 807-826. https://doi.org/10.12989/gae.2016.10.6.807
- Lee, S.T., Hooton, R.D., Jung, H., Park, D. and Choi, C.S. (2008), "Effect of limestone filler on the deterioration of mortars and pastes exposed to sulfate solutions at ambient temperature", Cement Concrete Res., 38(1), 68-76. https://doi.org/10.1016/j.cemconres.2007.08.003
- Liang, Y.N. and Yuan, Y.S. (2005), "Effects of environmental factors of sulfate attack on deterioration of concrete mechanical behavior", J. China Univ. Min. Technol., 34(4), 452-457.
- Liu, T., Zou, D., Teng, J. and Yan, G. (2012b), "The influence of sulfate attack on the dynamic properties of concrete column", Constr. Build. Mater., 28(1), 201-207. https://doi.org/10.1016/j.conbuildmat.2011.08.036
- Liu, Z., Deng, D., Schutter, G.D. and Yu, Z. (2012a), "Chemical sulfate attack performance of partially exposed cement and cement+fly ash paste", Constr. Build. Mater., 28(1), 230-237. https://doi.org/10.1016/j.conbuildmat.2011.08.071
- Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plasticdamage model for concrete", J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
- Mazars, J. and Pyaudier-Cabot, G. (1989), "Continuum damage theory-application to concrete", J. Eng. Mech., 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
- Menetrey, P. and Willam, K. (1995), "Triaxial failure criterion for concrete and its generalization", ACI Struct. J., 92(3), 311-318.
- Nehdi, M.L., Suleiman, A.R. and Soliman, A.M. (2014), "Investigation of concrete exposed to dual sulfate attack", Cement Concrete Res., 64, 42-53. https://doi.org/10.1016/j.cemconres.2014.06.002
- Neville, A. (2004), "The confused world of sulfate attack on concrete", Cement Concrete Res., 34(8), 1275-1296. https://doi.org/10.1016/j.cemconres.2004.04.004
- Nie, Q., Zhou, C., Li, H., Shu, X., Gong, H. and Huang, B. (2015), "Numerical simulation of fly ash concrete under sulfate attack", Constr. Build. Mater., 84, 261-268. https://doi.org/10.1016/j.conbuildmat.2015.02.088
- Saetta, A., Scotta, R. and Vitaliani, R. (1998), "Mechanical behavior of concrete under physical-chemical attacks", J. Eng. Mech., 124(10), 1100-1109. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:10(1100)
- Samson, E. and Marchand, J. (2007), "Modeling the transport of ions in unsaturated cement-based materials", Comput. Struct., 85(23-24), 1740-1756. https://doi.org/10.1016/j.compstruc.2007.04.008
- Santhanam, M., Cohen, M.D. and Olek, J. (2003), "Effects of gypsum formation on the performance of cement mortars during external sulfate attack", Cement Concrete Res., 33(3), 325-332. https://doi.org/10.1016/S0008-8846(02)00955-9
- Sarkar, S., Mahadevan, S., Meeussen, J.C.L., Sloot, H.V.D. and Kosson, D.S. (2010), "Numerical simulation of cementitious materials degradation under external sulfate attack", Cement Concrete Compos., 32(3), 241-252. https://doi.org/10.1016/j.cemconcomp.2009.12.005
- Schneider, U. and Chen, S.W. (1998), "Modeling and empirical formulas for chemical corrosion and stress corrosion of cementitious materials", Mater. Struct., 31(10), 662-668. https://doi.org/10.1007/BF02480442
- Shao, J.F., Jia, Y., Kondo, D. and Chiarelli, A.S. (2006), "A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions", Mech. Mater., 38(3), 218-232. https://doi.org/10.1016/j.mechmat.2005.07.002
- Sun, C., Chen, J., Zhu, J., Zhang, M. and Ye, J. (2013), "A new diffusion model of sulfate ions in concrete", Constr. Build. Mater., 39, 39-45. https://doi.org/10.1016/j.conbuildmat.2012.05.022
- Sun, W. and Zuo, X.B. (2012), "Numerical simulation of sulfate diffusivity in concrete under combination of mechanical loading and sulfate environments", J. Sustain. Cement-Based Mater., 1(1-2), 46-55. https://doi.org/10.1080/21650373.2012.728564
- Taqieddin, Z.N., Voyiadjis, G.Z. and Almasri, A.H. (2012), "Formulation and verification of a concrete model with strong coupling between isotropic damage and elastoplasticity and comparison to a weak coupling model", J. Eng. Mech., 138(5), 530-541. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000344
- Taylor, H.F.W., Famy, C. and Scrivener, K.L. (2001), "Delayed ettringite formation", Cement Concrete Res., 31(5), 683-693. https://doi.org/10.1016/S0008-8846(01)00466-5
- Tixier, R. and Mobasher, B. (2003), "Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation", J. Mater. Civil Eng., 15(4), 305-313. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(305)
- Wu, J.Y., Li, J. and Faria, R. (2006), "An energy release ratebased plastic-damage model for concrete", J. Solids Struct., 43(3-4), 583-612. https://doi.org/10.1016/j.ijsolstr.2005.05.038
- Xiong, C.S., Jiang, L.H., Zhang, Y. and Chu, H.Q. (2015), "Modeling of damage in cement paste subject to external Sulfate attack", Comput. Concrete, 16(6), 847-864. https://doi.org/10.12989/cac.2015.16.6.847
- Yang, D.Y., We, S.N. and Tan, Y.Q. (2005), "Performance evaluation of binary blends of portland cement and fly ash with complex admixture for durable concrete structures", Comput. Concrete, 2(5), 381-388 https://doi.org/10.12989/cac.2005.2.5.381
- Yuan, J., Liu, Y., Tan, Z.C. and Zhang, B.K. (2016), "Investigating the failure process of concrete under the coupled actions between sulfate attack and drying-wetting cycles by using x-ray CT", Constr. Build. Mater., 108, 129-138. https://doi.org/10.1016/j.conbuildmat.2016.01.040
- Yu, Y., Zhang, Y.X. and Khennane, A. (2015), "Numerical modelling of degradation of cement-based materials under leaching and external sulfate attack", Comput. Concrete, 158, 1-14.
- Yu, S.W. and Feng, X.Q. (1997), "Damage mechanics", Tsinghua University Press, Beijing, China.
- Zeng, L.F., Horrigmoe, G. and Andersen, R. (1996), "Numerical implementation of constitutive integration for rate-independent elastoplasticity", Comput. Mech., 18(5), 387-396. https://doi.org/10.1007/BF00376135
- Zheng, F.G., Wu, Z., Gu, C., Bao, T. and Hu, J. (2012), "A plastic damage model for concrete structure cracks with two damage variables", Sci. China Technol. Sci., 55(11), 2971-2980. https://doi.org/10.1007/s11431-012-4983-6
- Zhou, Y., Li, M., Sui, L. and Xing, F. (2016), "Effect of sulfate attack on the stress-strain relationship of FRP-confined concrete", Constr. Build. Mater., 110, 235-250. https://doi.org/10.1016/j.conbuildmat.2015.12.038
- Zuo, X.B., Sun, W., Li, H. and Zhao, Y.K. (2012a), "Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments", Comput. Concrete, 10(1), 47-51.
- Zuo, X.B., Sun, W., Yu, C. and Wan, X.R. (2010), "Modeling of ion diffusion coefficient in saturated concrete", Comput. Concrete, 7(5), 421-435. https://doi.org/10.12989/cac.2010.7.5.421
- Zuo, X.B., Sun, W. and Yu, C. (2012b), "Numerical investigation on expansive volume strain in concrete subjected to sulfate attack", Constr. Build. Mater., 36(4), 404-410. https://doi.org/10.1016/j.conbuildmat.2012.05.020
- Zuo, X.B., Wang, J.L., Sun, W., Li, H. and Yin, G.J. (2017), "Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack", Comput. Concrete, 19(1), 19-31. https://doi.org/10.12989/cac.2017.19.1.019
Cited by
- The research on static and dynamic mechanical properties of concrete under the environment of sulfate ion and chlorine ion vol.20, pp.2, 2017, https://doi.org/10.12989/cac.2017.20.2.205
- X-ray CT monitoring of macro void development in mortars exposed to sulfate attack vol.21, pp.4, 2017, https://doi.org/10.12989/cac.2018.21.4.367
- Experimental study and modeling on stress-strain curve of sulfate-corroded concrete vol.28, pp.1, 2017, https://doi.org/10.12989/cac.2021.28.1.001