Acknowledgement
Supported by : National Science Foundation of China, FRGS
References
- Aifantis, E. (1999), "Strain gradient interpretation of size effects", Int. J. Fract., 95(1), 299-314. https://doi.org/10.1023/A:1018625006804
- Anand, L., Gurtin, M., Lele, S. and Gething, C. (2005), "A onedimensional theory of strain-gradient plasticity: formulation, analysis, numerical results", J. Mech. Phys. Solid., 53(8), 1789-1826. https://doi.org/10.1016/j.jmps.2005.03.003
- Bertram, A. and Forest, S. (2014), "The thermodynamics of gradient elastoplasticity", Continuum Mech. Thermodyn., 26(3), 269-286. https://doi.org/10.1007/s00161-013-0300-2
- Dunstan, D., Ehrler, B., Bossis, R., Joly, S., P'ng, K. and Bushby, A. (2009), "Elastic limit and strain hardening of thin wires in torsion", Phys. Rev. Lett., 103(15), 155501. https://doi.org/10.1103/PhysRevLett.103.155501
- Evans, A. and Hutchinson, J. (2009), "A critical assessment of theories of strain gradient plasticity", Acta Materialia, 57(5), 1675-1688. https://doi.org/10.1016/j.actamat.2008.12.012
- Fleck, N. and Hutchinson, J. (1997), "Strain gradient plasticity", Adv. Appl. Mech., 33, 295-361.
- Fleck, N. and Hutchinson, J. (2001), "A reformulation of strain gradient plasticity", J. Mech. Phys. Solid., 49(10), 2245-2271. https://doi.org/10.1016/S0022-5096(01)00049-7
- Fleck, N., Hutchinson, J. and Willis, J. (2014), "Strain gradient plasticity under non-proportional loading", Proc. Royal Soc.: A, 470(2170), 20140267-20140267. https://doi.org/10.1098/rspa.2014.0267
- Fleck, N., Muller, G., Ashby, M. and Hutchinson, J. (1994), "Strain gradient plasticity: theory and experiment", Acta Metallurgica Et Materialia, 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9
- Fleck, N. and Willis, J. (2009), "A mathematical basis for straingradient plasticity theory. part ii: tensorial plastic multiplier", J. Mech. Phys. Solid., 57(7), 1045-1057. https://doi.org/10.1016/j.jmps.2009.03.007
- Forest, S. and Sievert, R. (2003), "Elastoviscoplastic constitutive frameworks for generalized continua", Acta Mechanica, 160(1), 71-111. https://doi.org/10.1007/s00707-002-0975-0
- Gao, H. and Huang, Y. (2001), "Taylor-based nonlocal theory of plasticity", Int. J. Solid. Struct., 38(15), 2615-2637. https://doi.org/10.1016/S0020-7683(00)00173-6
- Gao, H., Huang, Y., Nix, W. and Hutchinson, J. (1999), "Mechanism-based strain gradient plasticity-i. theory", J. Mech. Phys. Solid., 47(6), 1239-1263. https://doi.org/10.1016/S0022-5096(98)00103-3
- Gudmundson, P. (2004), "A unified treatment of strain gradient plasticity", J. Mech. Phys. Solid., 52(6), 1379-1406. https://doi.org/10.1016/j.jmps.2003.11.002
- Huang, Y., Qu, S., Hwang, K., Li, M. and Gao, H. (2004), "A conventional theory of mechanism-based strain gradient plasticity", Int. J. Plast., 20(4-5), 753-782. https://doi.org/10.1016/j.ijplas.2003.08.002
- Hutchinson, J. (2000), "Plasticity at the micron scale", Int. J. Solid. Struct., 37(1-2), 225-238. https://doi.org/10.1016/S0020-7683(99)00090-6
- Hutchinson, J. (2012), "Generalizing j2 flow theory: fundamental issues in strain gradient plasticity", Acta Mechanica Sinica, 28(4), 1078-1086. https://doi.org/10.1007/s10409-012-0089-4
- Kiener, D., Motz, C., Grosinger, W., Weygand, D. and Pippan, R. (2010), "Cyclic response of copper single crystal micro-beams", Scripta Materialia, 63(5), 500-503. https://doi.org/10.1016/j.scriptamat.2010.05.014
- Lam, D., Yang F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Liu, D., He, Y., Dunstan, D., Zhang, B., Gan, Z., Hu, P. and Ding, H. (2013), "Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment", Int. J. Plast., 41(1), 30-52. https://doi.org/10.1016/j.ijplas.2012.08.007
- Liu, J. and Soh, A. (2014), "Bridging strain gradient elasticity and plasticity toward general loading histories", Mech. Mater., 78(16), 11-21. https://doi.org/10.1016/j.mechmat.2014.07.010
- Nix, W. and Gao, H. (1998), "Indentation size effects in crystalline materials: a law for strain gradient plasticity", J. Mech. Phys. Solid., 46(3), 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
- Stolken, J. and Evans, A. (1998), "A microbend test method for measuring the plasticity length scale", Acta Materialia, 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
Cited by
- Seismic fracture analysis of concrete arch dams incorporating the loading rate dependent size effect of concrete vol.79, pp.2, 2021, https://doi.org/10.12989/sem.2021.79.2.169