DOI QR코드

DOI QR Code

On elastic and plastic length scales in strain gradient plasticity

  • Liu, Jinxing (Faculty of Civil Engineering and Mechanics, Jiangsu University) ;
  • Wang, Wen (Faculty of Civil Engineering and Mechanics, Jiangsu University) ;
  • Zhao, Ziyu (Faculty of Civil Engineering and Mechanics, Jiangsu University) ;
  • Soh, Ai Kah (School of Engineering, Monash University Malaysia)
  • Received : 2016.06.09
  • Accepted : 2016.11.11
  • Published : 2017.01.25

Abstract

The Fleck-Hutchinson theory on strain gradient plasticity (SGP), proposed in Adv. Appl Mech 33 (1997) 295, has recently been reformulated by adopting the strategy of decomposing the second order strain presented by Lam et al. in J Mech Pays Solids 51 (2003) 1477. The newly built SGP satisfies the non negativity of plastic dissipation, which is still an outstanding issue in other SGP theories. Furthermore, it explicitly shows how elastic strain gradients and corresponding elastic characteristic length scales come into play in general elastic-plastic loading histories. In this study, the relation between elastic length scales and plastic length scales is investigated by taking wire torsion as an example. It is concluded that the size effects arising when two sets of length scales are of the same order are essentially elastic instead of plastic.

Keywords

Acknowledgement

Supported by : National Science Foundation of China, FRGS

References

  1. Aifantis, E. (1999), "Strain gradient interpretation of size effects", Int. J. Fract., 95(1), 299-314. https://doi.org/10.1023/A:1018625006804
  2. Anand, L., Gurtin, M., Lele, S. and Gething, C. (2005), "A onedimensional theory of strain-gradient plasticity: formulation, analysis, numerical results", J. Mech. Phys. Solid., 53(8), 1789-1826. https://doi.org/10.1016/j.jmps.2005.03.003
  3. Bertram, A. and Forest, S. (2014), "The thermodynamics of gradient elastoplasticity", Continuum Mech. Thermodyn., 26(3), 269-286. https://doi.org/10.1007/s00161-013-0300-2
  4. Dunstan, D., Ehrler, B., Bossis, R., Joly, S., P'ng, K. and Bushby, A. (2009), "Elastic limit and strain hardening of thin wires in torsion", Phys. Rev. Lett., 103(15), 155501. https://doi.org/10.1103/PhysRevLett.103.155501
  5. Evans, A. and Hutchinson, J. (2009), "A critical assessment of theories of strain gradient plasticity", Acta Materialia, 57(5), 1675-1688. https://doi.org/10.1016/j.actamat.2008.12.012
  6. Fleck, N. and Hutchinson, J. (1997), "Strain gradient plasticity", Adv. Appl. Mech., 33, 295-361.
  7. Fleck, N. and Hutchinson, J. (2001), "A reformulation of strain gradient plasticity", J. Mech. Phys. Solid., 49(10), 2245-2271. https://doi.org/10.1016/S0022-5096(01)00049-7
  8. Fleck, N., Hutchinson, J. and Willis, J. (2014), "Strain gradient plasticity under non-proportional loading", Proc. Royal Soc.: A, 470(2170), 20140267-20140267. https://doi.org/10.1098/rspa.2014.0267
  9. Fleck, N., Muller, G., Ashby, M. and Hutchinson, J. (1994), "Strain gradient plasticity: theory and experiment", Acta Metallurgica Et Materialia, 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9
  10. Fleck, N. and Willis, J. (2009), "A mathematical basis for straingradient plasticity theory. part ii: tensorial plastic multiplier", J. Mech. Phys. Solid., 57(7), 1045-1057. https://doi.org/10.1016/j.jmps.2009.03.007
  11. Forest, S. and Sievert, R. (2003), "Elastoviscoplastic constitutive frameworks for generalized continua", Acta Mechanica, 160(1), 71-111. https://doi.org/10.1007/s00707-002-0975-0
  12. Gao, H. and Huang, Y. (2001), "Taylor-based nonlocal theory of plasticity", Int. J. Solid. Struct., 38(15), 2615-2637. https://doi.org/10.1016/S0020-7683(00)00173-6
  13. Gao, H., Huang, Y., Nix, W. and Hutchinson, J. (1999), "Mechanism-based strain gradient plasticity-i. theory", J. Mech. Phys. Solid., 47(6), 1239-1263. https://doi.org/10.1016/S0022-5096(98)00103-3
  14. Gudmundson, P. (2004), "A unified treatment of strain gradient plasticity", J. Mech. Phys. Solid., 52(6), 1379-1406. https://doi.org/10.1016/j.jmps.2003.11.002
  15. Huang, Y., Qu, S., Hwang, K., Li, M. and Gao, H. (2004), "A conventional theory of mechanism-based strain gradient plasticity", Int. J. Plast., 20(4-5), 753-782. https://doi.org/10.1016/j.ijplas.2003.08.002
  16. Hutchinson, J. (2000), "Plasticity at the micron scale", Int. J. Solid. Struct., 37(1-2), 225-238. https://doi.org/10.1016/S0020-7683(99)00090-6
  17. Hutchinson, J. (2012), "Generalizing j2 flow theory: fundamental issues in strain gradient plasticity", Acta Mechanica Sinica, 28(4), 1078-1086. https://doi.org/10.1007/s10409-012-0089-4
  18. Kiener, D., Motz, C., Grosinger, W., Weygand, D. and Pippan, R. (2010), "Cyclic response of copper single crystal micro-beams", Scripta Materialia, 63(5), 500-503. https://doi.org/10.1016/j.scriptamat.2010.05.014
  19. Lam, D., Yang F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  20. Liu, D., He, Y., Dunstan, D., Zhang, B., Gan, Z., Hu, P. and Ding, H. (2013), "Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment", Int. J. Plast., 41(1), 30-52. https://doi.org/10.1016/j.ijplas.2012.08.007
  21. Liu, J. and Soh, A. (2014), "Bridging strain gradient elasticity and plasticity toward general loading histories", Mech. Mater., 78(16), 11-21. https://doi.org/10.1016/j.mechmat.2014.07.010
  22. Nix, W. and Gao, H. (1998), "Indentation size effects in crystalline materials: a law for strain gradient plasticity", J. Mech. Phys. Solid., 46(3), 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
  23. Stolken, J. and Evans, A. (1998), "A microbend test method for measuring the plasticity length scale", Acta Materialia, 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0

Cited by

  1. Seismic fracture analysis of concrete arch dams incorporating the loading rate dependent size effect of concrete vol.79, pp.2, 2021, https://doi.org/10.12989/sem.2021.79.2.169