References
- Abdel-Rahman, E.M., Younis, M.I. and Nayfeh, A.H. (2002), "Characterization of the mechanical behavior of an electrically actuated microbeam", Micromech. Microeng., 12(6), 759-766. https://doi.org/10.1088/0960-1317/12/6/306
- Aboelkassem, Y., Nayfeh, A.H. and Ghommem, M. (2010), "Biomass sensor using an electrostatically actuated microcantilever in a vacuum microchannel", Microsyst. Technol., 16(10), 1749-1755. https://doi.org/10.1007/s00542-010-1087-8
- Bataineh, A.M. and Younis, M.I. 2015, "Dynamics of a clampedclamped microbeam resonator considering fabrication imperfections", Microsyst. Technol., 21(11), 2425-2434. https://doi.org/10.1007/s00542-014-2349-7
- Beeby, S., Ensell, G., Kraft, M. and White, N. (2004), MEMS Mechanical Sensors, Artech House, Inc, Boston, London.
- Boudjiet, M.T., Bertrand, J., Mathieu, F., Nicu, L., Mazenq, L., Leichle, T., Heinrich, S. M., Pellet, C. and Dufour, I. (2015), "Geometry optimization of uncoated silicon microcantileverbased gas density sensors", Sens. Actuat. B: Chem., 208, 600-607 https://doi.org/10.1016/j.snb.2014.11.067
- Chaterjee, S. and Pohit, G.A. (2009), "Large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams", J. Sound Vib., 322(4-5), 969-986. https://doi.org/10.1016/j.jsv.2008.11.046
- Chitsaz Yazdi, F. and Jalali, A. (2015), "Vibration behavior of a viscoelastic composite microbeam under simultaneous electrostatic and piezoelectric actuation", Mech. Time-Depend. Mater., 19(3), 277-304.
- Dufour, I., Lochon, F., Heinrich, S.M., Josse, F. and Rebiere, D. (2007), "Effect of coating viscoelasticity on quality factor and limit of detection of microcantilever chemical sensors", Sens. J., 7(2), 230-236. https://doi.org/10.1109/JSEN.2006.888600
- Fu, Y.M., Zhang, J. and Bi, R.G. (2009), "Analysis of the nonlinear dynamic stability for an electrically actuated viscoelastic microbeam", Microsyst. Technol., 15(5), 763-769. https://doi.org/10.1007/s00542-009-0791-8
- Ghayesh, M.H., Farokhi, H. and Alici, G. (2015), "Size-dependent electro-elasto-mechanics of MEMS with initially curved deformable electrodes", Int. J. Mech. Sci., 103, 247-264. https://doi.org/10.1016/j.ijmecsci.2015.09.011
- Hoseini, S.M., Shooshtari, A., Kalhori, H. and Mahmoodi, S.M. (2014), "Nonlinear-forced vibrations of piezoelectrically actuated viscoelastic cantilevers", Nonlin. Dyn., 78(1), 571-583. https://doi.org/10.1007/s11071-014-1461-7
- Huang, Y.T., Chen, H.L. and Hsu, W. (2014), "An analytical model for calculating the pull-in voltage of micro cantilever beams subjected to tilted and curled effects", Microelec. Eng., 125, 73-77. https://doi.org/10.1016/j.mee.2013.12.030
- Kim, I.K. and Lee, S.I. (2015), "Nonlinear resonances of a singlewall carbon nanotube cantilever", Physica E: Low-dimens. Syst. Nanostruct., 67, 159-167. https://doi.org/10.1016/j.physe.2014.11.022
- Lizhoung, X. and Xiaoli, J. (2007), "Electromechanical coupled nonlinear dynamics for microbeams", Arch. Appl. Mech., 77(7), 485-502. https://doi.org/10.1007/s00419-007-0110-8
- Mahmoodi, S.N., Afshari, M. and Jalili, N. (2008), "Nonlinear vibrations of piezoelectric microcantilevers for biologicallyinduced surface stress sensing", Commun. Nonlin. Sci. Numer. Simul., 13(9), 1964-1977. https://doi.org/10.1016/j.cnsns.2007.03.030
- Mahmoodi, S.N., Khadem, S.E. and Kokabi, M. (2007), "Nonlinear free vibrations of Kelvin-Voigt visco-elastic beams", Int. J. Mech. Sci., 49(6), 722-732. https://doi.org/10.1016/j.ijmecsci.2006.10.005
- Masri, K.M. and Younis, M.I. (2015), "Investigation of the dynamics of a clamped-clamped microbeam near symmetric higher order modes using partial electrodes", Int. J. Dyn. Control, 3(2), 173-182. https://doi.org/10.1007/s40435-014-0137-y
- Najar, F., El-Borgi, S., Reddy, J.N. and Mrabet, K. (2015), "Nonlinear nonlocal analysis of electrostatic nanoactuators", Compos. Struct., 120, 117-128. https://doi.org/10.1016/j.compstruct.2014.09.058
- Nayfeh, A.H. and Pai, P.F. (2004), Linear and Nonlinear Structural Mechanics, Wiley, New York.
- Nayfeh, A.H. and Younis, M.I. (2005), "Dynamics of MEMS resonators under superharmonic and subharmonic excitations", Micromech. Microeng., 15(10), 1840-1847. https://doi.org/10.1088/0960-1317/15/10/008
- Nayfeh, A.H., Younis, M.I. and Abdel-Rahman, E.M. (2007), "Dynamic pull-in phenomenon in MEMS resonators", Nonlin. Dyn., 48(1), 153-163. https://doi.org/10.1007/s11071-006-9079-z
- Nie, M., Huang, Q. and Li, W. (2006), "Measurement of material properties of individual layers for composite films by a pull-in method", J. Phys. Conf. Ser., 34(34), 516-521. https://doi.org/10.1088/1742-6596/34/1/085
- Poloei, E., Zamanian, M. and Hosseini, S.A.A. (2015), "Static deflection and natural frequency analysis of two-layered electrostatically actuated microcantilever for finding the optimum configuration", Mod. Mech. Eng., 15(5), 245-253.
- Raeisifard, H., Zamanian, M., Nikkhah Bahrami, M., Yousefi-Koma, A. and Raeisi Fard, H. (2014), "On the nonlinear primary resonances of a piezoelectric laminated micro system under electrostatic control voltage", J. Sound Vib., 333(21), 5494-5510. https://doi.org/10.1016/j.jsv.2014.05.050
- Rahaeifard, M. and Ahmadian, M.T. (2015), "On pull-in instabilities of microcantilevers", Int. J. Eng. Sci., 87, 23-31. https://doi.org/10.1016/j.ijengsci.2014.11.002
- Rasekh, M. and Khadem, S.E. (2011), "Pull-in analysis of an electrostatically actuated nano-cantilever beam with nonlinearity in curvature and inertia", Int. J. Mech. Sci., 53(2), 108-115. https://doi.org/10.1016/j.ijmecsci.2010.11.007
- Rasekh, M. and Khadem, S.E. (2013), "Design and performance analysis of a nanogyroscope based on electrostatic actuation and capacitive sensing", J. Sound Vib., 332(23), 6155-6168. https://doi.org/10.1016/j.jsv.2013.06.024
- Rezazadeh, G. (2008), "A comprehensive model to study nonlinear behavior of multilayered micro beam switches", Microsyst. Technol., 14(1), 135-141. https://doi.org/10.1007/s00542-007-0398-x
- Rezazadeh, G., Keyvani, A. and Jafarmadar, S. (2012), "On a MEMS based dynamic remote temperature sensor using transverse vibration of a bi-layer micro-cantilever", Measur., 45(3), 580-589. https://doi.org/10.1016/j.measurement.2011.10.004
- Shooshtari, A., Hoseini, S.M., Mahmoodi, S.N. and Kalhori, H. (2012), "Analytical solution for nonlinear free vibrations of viscoelastic microcantilevers covered with a piezoelectric layer", Smart Mater. Struct., 21(7), 75015- 75025. https://doi.org/10.1088/0964-1726/21/7/075015
- Sun, W., Sun, Y., Yu, Y. and Zheng, S. (2016), "Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method", Struct. Eng. Mech., 59(1), 1-14. https://doi.org/10.12989/sem.2016.59.1.001
- Wang, K.F. and Wang, B.L. (2015), "A general model for nano-cantilever switches with consideration of surface effects and nonlinear curvature", Physica E: Low-dimens. Syst. Nanostruct., 66, 197-208. https://doi.org/10.1016/j.physe.2014.10.012
- Yang, W.D. and Wang, X. (2016), "Nonlinear pull-in instability of carbon nanotubes reinforced nano-actuator with thermally corrected Casimir force and surface effect", Int. J. Mech. Sci., 107, 34-42. https://doi.org/10.1016/j.ijmecsci.2015.12.025
- Younis, M. I. (2011), MEMS Linear and Nonlinear Statics and Dynamics, Springer US, New York.
- Younis, M.I. (2015), "Multi-mode excitation of a clampedclamped microbeam resonator", Nonlin. Dyn., 80(3), 1531-1541. https://doi.org/10.1007/s11071-015-1960-1
- Younis, M.I. and Alsaleem, F. (2009), "Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena", J. Comput. Nonlin. Dyn., 4(2), 021010-021025. https://doi.org/10.1115/1.3079785
- Younis, M.I. and Nayfeh, A.H. (2003), "A Study of the nonlinear response of a resonant microbeam to an electric actuation", Nonlin. Dyn., 3(1), 91-117.
- Zamanian, M. and Karimiyan, A. (2015), "Analysis of the mechanical behavior of a doubled microbeam configuration under electrostatic actuation", Int. J. Mech. Sci., 93, 82-92. https://doi.org/10.1016/j.ijmecsci.2015.01.011
- Zamanian, M. and Khadem, S.E. (2010), "Nonlinear vibration of an electrically actuated microresonator tuned by combined DC piezoelectric and electric", Smart Mater. Struct., 19(1), 15012-15031. https://doi.org/10.1088/0964-1726/19/1/015012
- Zamanian, M., Khadem, S.E. and Mahmoodi, S.N. (2010), "Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation", Struct. Eng. Mech., 35(4), 387-407. https://doi.org/10.12989/sem.2010.35.4.387
Cited by
- Modeling and analysis of power harvesting by a piezoelectric layer coated on an electrostatically actuated microcantilever vol.5, pp.12, 2018, https://doi.org/10.1088/2053-1591/aadf15
- Vibrations of a Resonant Gas Sensor Under Multicoupled Fields vol.14, pp.4, 2019, https://doi.org/10.1115/1.4042292
- Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions vol.73, pp.3, 2020, https://doi.org/10.12989/sem.2020.73.3.319