References
- Ahouel, M., Houari, M.S.A., Bedia, E. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
- Akgoz, B. and Civalek, O. (2013), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004
- Akgoz, B. and Civalek, O. (2014a), "A new trigonometric beam model for buckling of strain gradient microbeams", Int. J. Mech. Sci., 81, 88-94. https://doi.org/10.1016/j.ijmecsci.2014.02.013
- Akgoz, B. and Civalek, O. (2014b), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225. https://doi.org/10.1016/j.compstruct.2014.02.022
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(10), 94. https://doi.org/10.1016/j.compstruct.2008.07.008
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Benatta, M., Mechab, I., Tounsi, A. and Adda Bedia, E. (2008), "Static analysis of functionally graded short beams including warping and shear deformation effects", Comput. Mater. Sci., 44(2), 765-773. https://doi.org/10.1016/j.commatsci.2008.05.020
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Duan, W.H., Challamel, N., Wang, C. and Ding, Z. (2013), "Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams", J. Appl. Phys., 114(10), 104312. https://doi.org/10.1063/1.4820565
- Ekinci, K. and Roukes, M. (2005), "Nanoelectromechanical systems", Review of Scientific Instruments, 76(6), 061101. https://doi.org/10.1063/1.1927327
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.-A. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Fallah, A. and Aghdam, M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Eur. J. Mech.-A/Solids, 30(4), 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005
- Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
- Hasanyan, D., Batra, R. and Harutyunyan, S. (2008), "Pull-in instabilities in functionally graded microthermoelectromechanical systems", J. Therm. Stress., 31(10), 1006-1021. https://doi.org/10.1080/01495730802250714
- Hosseini, S. and Rahmani, O. (2016a), "Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory", Meccanica, 1-17.
- Hosseini, S. and Rahmani, O. (2016b), "Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model", Appl. Physics A, 122(3), 1-11.
- Hosseini, S. and Rahmani, O. (2016c), "Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity", J. Therm. Stress., 39(10), 1252-1267. https://doi.org/10.1080/01495739.2016.1215731
- Hosseini, A.H., Rahmani, O., Nikmehr, M. and Golpayegani, I.F. (2016), "Axial Vibration of Cracked Nanorods Embedded in Elastic Foundation Based on a Nonlocal Elasticity Model", Sensor Letters, 14(10), 1019-1025. https://doi.org/10.1166/sl.2016.3575
- Janghorban, M. (2012), "Static analysis of tapered nanowires based on nonlocal Euler-Bernoulli beam theory via differential quadrature method", Latin Am. J. Solids Struct., 9(2), 1-10.
- Jandaghian, A.A. and Rahmani, O. (2016), "Vibration analysis of functionally graded piezoelectric nanoscale plates by nonlocal elasticity theory: An analytical solution", Superlatt. Microstruct., 100, 57-75. https://doi.org/10.1016/j.spmi.2016.08.046
- Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Physica E: Low-Dimens. Syst. Nanostruct., 43(9), 1602-1604. https://doi.org/10.1016/j.physe.2011.05.002
- Jha, D., Kant, T. and Singh, R. (2013), "Free vibration of functionally graded plates with a higher-order shear and normal deformation theory", Int. J. Struct. Stab. Dyn., 13(1), 1350004. https://doi.org/10.1142/S0219455413500041
- Karama, M., Afaq, K. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
- Ke, L.-L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), "Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6), 488-502. https://doi.org/10.1080/15376490902781175
- Khalili, S., Jafari, A. and Eftekhari, S. (2010), "A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads", Compos. Struct., 92(10), 2497-2511. https://doi.org/10.1016/j.compstruct.2010.02.012
- Kocaturk, T., Simsek, M. and Akbas, S.D. (2011), "Large displacement static analysis of a cantilever Timoshenko beam composed of functionally graded material", Sci. Eng. Compos. Mater., 18(1-2), 21-34. https://doi.org/10.1515/secm.2011.005
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002
- Lavrik, N.V., Sepaniak, M.J. and Datskos, P.G. (2004), "Cantilever transducers as a platform for chemical and biological sensors", Rev. Sci. Instru., 75(7), 2229-2253. https://doi.org/10.1063/1.1763252
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Lu, C., Lim, C. and Chen, W. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
- McFarland, A.W. and Colton, J.S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15(5), 1060. https://doi.org/10.1088/0960-1317/15/5/024
- Mesut, S. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Mohammadi-Alasti, B., Rezazadeh, G., Borgheei, A.-M., Minaei, S. and Habibifar, R. (2011), "On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure", Compos. Struct., 93(6), 1516-1525. https://doi.org/10.1016/j.compstruct.2010.11.013
- Mohanty, S., Dash, R. and Rout, T. (2012), "Static and dynamic stability analysis of a functionally graded Timoshenko beam", Int. J. Struct. Stab. Dyn., 12(4), 1250025. https://doi.org/10.1142/S0219455412500253
- Nguyen, N.-T., Kim, N.-I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., Int. J., 17(5), 641-665. https://doi.org/10.12989/scs.2014.17.5.641
- Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials", ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
- Rahmani, O., Hosseini, S., Noroozi Moghaddam, M. and Fakhari Golpayegani, I. (2015), "Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: An analytical study", Int. J. Appl. Mech., 7(3), 1550036. https://doi.org/10.1142/S1758825115500362
- Rahmani, O., Hosseini, S. and Parhizkari, M. (2016a), "Buckling of double functionally-graded nanobeam system under axial load based on nonlocal theory: An analytical approach", Microsyst. Technol., 1-13.
- Rahmani, O., Hosseini, S. and Hayati, H. (2016b), "Frequency analysis of curved nano-sandwich structure based on a nonlocal model", Modern Phys. Lett. B, 30(10), 1650136.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Refaeinejad, V., Rahmani, O. and Hosseini, S.A.H. (2016a), "An analytical solution for bending, buckling, and free vibration of FG nanobeam lying on Winkler-Pasternak elastic foundation using different nonlocal higher order shear deformation beam theories", Int. J. Sci. Iranica.
- Refaeinejad, V., Rahmani, O. and Hosseini, S.A.H. (2016b), "Evaluation of nonlocal higher order shear deformation models for the vibrational analysis of functionally graded nanostructures", Mech. Adv. Mater. Struct.
- Saggam, N. (2012), "Scale effects on coupled wave propagation in single walled carbon nanotubes", Latin Am. J. Solids Struct., ABCM J., 9(4), 497. https://doi.org/10.1590/S1679-78252012000400005
- Sallai, B.O., Tounsi, A., Mechab, I., Bachir, B.M., Meradjah, M. and Adda Bedia, E.A. (2009), "A theoretical analysis of flexional bending of Al/Al2O3O S-FGM thick beams", Comput. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001
- Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008
- Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Comput. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001
- Simsek, M. and Cansiz, S. (2012), "Dynamics of elastically connected double-functionally graded beam systems with different boundary conditions under action of a moving harmonic load", Compos. Struct., 94(9), 2861-2878. https://doi.org/10.1016/j.compstruct.2012.03.016
- Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
- Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
- Simsek, M. and Yurtcu, H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Sina, S., Navazi, H. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
- Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/BF01176650
- Sudak, L. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281-7287. https://doi.org/10.1063/1.1625437
- Thai, H.-T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Thai, H.-T. and Vo, T.P. (2012a), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
- Thai, H.-T. and Vo, T.P. (2012b), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Wang, L.F. and Hu, H. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B: Condens. Matter., 71(19), 195412. https://doi.org/10.1103/PhysRevB.71.195412
- Wang, C., Zhang, Y. and He, X. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnol., 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401
- Wang, C., Zhang, Y., Ramesh, S.S. and Kitipornchai, S. (2006), "Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 39(17), 3904. https://doi.org/10.1088/0022-3727/39/17/029
- Wang, C., Kitipornchai, S., Lim, C. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475)
- Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", Materials Science Forum, pp. 255-260.
- Zhang, J. and Fu, Y. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica, 47(7), 1649-1658. https://doi.org/10.1007/s11012-012-9545-2
- Zhang, Z., Challamel, N. and Wang, C. (2013), "Eringen's small length scale coefficient for buckling of nonlocal Timoshenko beam based on microstructured beam model", J. Appl. Phys., 114(11), 114902. https://doi.org/10.1063/1.4821246
Cited by
- Buckling Analysis of Orthotropic Nanoscale Plates Resting on Elastic Foundations vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
- Higher-Order Thermo-Elastic Analysis of FG-CNTRC Cylindrical Vessels Surrounded by a Pasternak Foundation vol.9, pp.1, 2019, https://doi.org/10.3390/nano9010079
- A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2017, https://doi.org/10.12989/sem.2017.64.6.737
- An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2017, https://doi.org/10.12989/scs.2017.25.6.693
- Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2017, https://doi.org/10.12989/sem.2018.65.5.621
- Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory vol.26, pp.6, 2017, https://doi.org/10.12989/scs.2018.26.6.663
- A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2017, https://doi.org/10.12989/sss.2018.21.4.397
- Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2017, https://doi.org/10.12989/gae.2018.14.6.519
- A unified formulation for modeling of inhomogeneous nonlocal beams vol.66, pp.3, 2017, https://doi.org/10.12989/sem.2018.66.3.369
- Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2017, https://doi.org/10.12989/gae.2018.15.1.711
- A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2017, https://doi.org/10.12989/scs.2018.27.5.599
- A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2017, https://doi.org/10.12989/anr.2018.6.2.147
- Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter vol.28, pp.1, 2017, https://doi.org/10.12989/scs.2018.28.1.013
- Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions vol.28, pp.2, 2018, https://doi.org/10.12989/scs.2018.28.2.149
- Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory vol.28, pp.6, 2018, https://doi.org/10.12989/scs.2018.28.6.749
- A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates vol.22, pp.3, 2017, https://doi.org/10.12989/sss.2018.22.3.303
- Analytical determination of shear correction factor for Timoshenko beam model vol.29, pp.4, 2017, https://doi.org/10.12989/scs.2018.29.4.483
- Finite strain nonlinear longitudinal vibration of nanorods vol.6, pp.4, 2018, https://doi.org/10.12989/anr.2018.6.4.323
- Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers vol.23, pp.3, 2017, https://doi.org/10.12989/sss.2019.23.3.215
- A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams vol.57, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/jnanor.57.175
- Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation vol.70, pp.1, 2019, https://doi.org/10.12989/sem.2019.70.1.055
- Frequency response of initially deflected nanotubes conveying fluid via a nonlinear NSGT model vol.72, pp.1, 2017, https://doi.org/10.12989/sem.2019.72.1.071
- A Non-Linear Spring Model for Predicting Modal Behavior of Oscillators Built from Double Walled Carbon Nanotubes vol.60, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/jnanor.60.21
- Longitudinal vibration of carbon nanotubes with elastically restrained ends using doublet mechanics vol.26, pp.2, 2020, https://doi.org/10.1007/s00542-019-04512-1
- Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.205
- Critical Buckling Load of Triple-Walled Carbon Nanotube Based on Nonlocal Elasticity Theory vol.62, pp.None, 2020, https://doi.org/10.4028/www.scientific.net/jnanor.62.108
- A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
- Axial vibration analysis of a Rayleigh nanorod with deformable boundaries vol.26, pp.8, 2017, https://doi.org/10.1007/s00542-020-04808-7
- On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2017, https://doi.org/10.12989/scs.2021.38.5.533