References
- Ahouel, M., Houari, M., Bedia, E. and Tounsi, A. (2016), "Size-dependent mechanical behaviour of functionally graded trigonometric shear deformation nanobeams including neutral surface position conceptˮ, Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
- Akbas, S. (2015), "Wave propagation of a functionally graded beam in thermal environmentsˮ, Steel Compos. Struct., Int. J., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421
- Anlas, G., Santare, M.H. and Lambros, J. (2000), "Numerical calculation of stress intensity factors in functionally graded materialsˮ, Int. J. Fracture, 104(1), 131-143. https://doi.org/10.1023/A:1007652711735
- Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S. (2015), "A computational shear model for vibrational analysis of functionally graded beams with porositiesˮ, Steel Compos. Struct., Int. J., 19(2), 369-385. https://doi.org/10.12989/scs.2015.19.2.369
- Bedia, A. and Bousahla, A. (2016), "Mechanical and hydrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theoryˮ, Steel Compos. Struct., Int. J., 20(4), 889-912. https://doi.org/10.12989/scs.2016.20.4.889
- Benferhat, R., Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porositiesˮ, Steel Compos. Struct., Int. J., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123
- Bennai, R., Atmabe, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beamsˮ, Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
- Bohidar, S.K., Sharma, R. and Mishra, P.R. (2014), "Functionally graded materials: A critical reviewˮ, Int. J. Res., 1(7), 289-301.
- Bounouara, F., Benrahou, K., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundationˮ, Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Carpinteri, A. and Pugno, N. (2006), "Cracks in re-entrant corners in functionally graded materialsˮ, Eng. Fracture Mech., 73(6), 1279-1291. https://doi.org/10.1016/j.engfracmech.2006.01.008
- Chakrabarty, J. (2006), Theory of Plasticity, Elsevier Butterworth-Heinemann, Oxford, UK.
- Darlimaz, K. (2015), "Vibration analysis of functionally graded material (FGM) grid systemˮ, Steel Compos. Struct., Int. J., 18(2), 395-408. https://doi.org/10.12989/scs.2015.18.2.395
- Galeban, M., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materialsˮ, Steel Compos. Struct., Int. J., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999
-
Kaman, M.O. and Cetisli, F. (2012), "Numerical analysis of center cracked orthotropic fgm plate: Crack and material axes differ by
${\theta}^{\circ}$ ˮ, Steel Compos. Struct., Int. J., 13(2), 187-206. DOI: 10.12989/scs.2012.13.2.187 - Lubliner, J. (2006), Plasticity Theory (Revised Edition), University of California, Berkeley, CA, USA.
- Parvanova, S.L., Dineva, P.S. and Manolis, G.D. (2013), "Dynamic behavior of a finite-sized elastic solid with multiple cavities and inclusions using BIEMˮ, Acta Mech., 224, 597-618. https://doi.org/10.1007/s00707-012-0759-0
- Parvanova, S.L., Dineva, P.S., Manolis, G.D. and Kochev, P.N. (2014), "Dynamic response of a solid with multiple inclusions under anti-plane strain conditions by the BEMˮ, Comput. Struct., 139, 65-83. https://doi.org/10.1016/j.compstruc.2014.04.002
- Pei, G. and Asaro, R.J. (1997), "Cracks in functionally graded materialsˮ, Int. J. Solids Struct., 34(1), 1-17. https://doi.org/10.1016/0020-7683(95)00289-8
- Petrov, V.V. (2014), Non-linear Incremental Structural Mechanics, M.: Infra-Injeneria.
- Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materialsˮ, Struct. Eng. Mech., Int. J., 58(2), 217-230. DOI: 10.12989/sem.2016.58.2.217
- Szekrenyes, A. (2012), "J-integral for delaminated beam and plate modelsˮ, Periodica polytechnica, Mech. Eng., 56(1), 63-71. https://doi.org/10.3311/pp.me.2012-1.10
- Tilbrook, M.T., Moon, R.J. and Hoffman, M. (2005), "Crack propagation in graded compositesˮ, Compos. Sci. Technol., 65(2), 201-220. https://doi.org/10.1016/j.compscitech.2004.07.004
- Upadhyay, A.K. and Simha, K.R.Y. (2007), "Equivalent homogeneous variable depth beams for cracked FGM beams; compliance approachˮ, Int. J. Fract., 144(2), 209-213. https://doi.org/10.1007/s10704-007-9089-y
- Uslu Uysal, M. (2017), "Virtual crack closure technique on delamination fracture toughness of composite materials based on epoxy resin filled with micro-scale hard coalˮ, Acta Physica Polonica A. [In press]
- Uslu Uysal, M. and Güven, U. (2016), "A bonded plate having orthotropic inclusion in adhesive layer under in-plane shear loadingˮ, J. Adhesion, 92(3), 214-235. DOI: 10.1080/00218464.2015.1019064
- Uslu Uysal, M. and Kremzer, M. (2015), "Buckling behaviour of short cylindrical functionally gradient polymeric materialsˮ, Acta Physica Polonica A, 127(4), 1355-1357. DOI: 10.12693/APhysPolA.127.1355
- Uysal, M. (2016), "Buckling behaviours of functionally graded polymeric thin-walled hemispherical shellsˮ, Steel Compos. Struct., Int. J., 21(4), 849-862. https://doi.org/10.12989/scs.2016.21.4.849
- Zhang, H., Li, X.F., Tang, G.J. and Shen, Z.B. (2013), "Stress intensity factors of double cantilever nanobeams via gradient elasticity theoryˮ, Eng. Fract. Mech., 105(1), 58-64. https://doi.org/10.1016/j.engfracmech.2013.03.005
Cited by
- Elastic wave scattering and stress concentration in a finite anisotropic solid with nano-cavities vol.87, pp.12, 2017, https://doi.org/10.1007/s00419-017-1303-4
- Aeroelastic behavior of nano-composite beam-plates with double delaminations vol.33, pp.5, 2017, https://doi.org/10.12989/scs.2019.33.5.653
- Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials vol.34, pp.5, 2017, https://doi.org/10.12989/scs.2020.34.5.671