DOI QR코드

DOI QR Code

Optimal Design Space Exploration of Multi-core Architecture for Real-time Lane Detection Algorithm

실시간 차선인식 알고리즘을 위한 최적의 멀티코어 아키텍처 디자인 공간 탐색

  • Received : 2017.01.10
  • Accepted : 2017.02.02
  • Published : 2017.03.31

Abstract

This paper proposes a four-stage algorithm for detecting lanes on a driving car. In the first stage, it extracts region of interests in an image. In the second stage, it employs a median filter to remove noise. In the third stage, a binary algorithm is used to classify two classes of backgrond and foreground of an input image. Finally, an image erosion algorithm is utilized to obtain clear lanes by removing noises and edges remained after the binary process. However, the proposed lane detection algorithm requires high computational time. To address this issue, this paper presents a parallel implementation of a real-time line detection algorithm on a multi-core architecture. In addition, we implement and simulate 8 different processing element (PE) architectures to select an optimal PE architecture for the target application. Experimental results indicate that 40×40 PE architecture show the best performance, energy efficiency and area efficiency.

본 논문에서는 주행 중인 차량의 차선 인식을 위해 4단계로 구성된 알고리즘을 제안한다. 첫 번째 단계에서는 관심영역 추출한다. 두 번째 단계에서는 신호 잡음을 제기하기 위해 중간 값 필터를 이용한다. 세 번째 단계에서는 입력되는 이미지의 배경과 전경의 두 클래스로 구분하기 위한 이진화 알고리즘을 수행한다. 마지막 단계에서는 이진화 과정 후에 남아 있는 노이즈나 불완전한 에지 등을 제거하여 선명한 차선을 얻기 위해 이미지 침식 알고리즘을 이용한다. 하지만 이러한 차선 인식 앍고리즘은 높은 계산량을 요구하여 실시간 처리가 어려운 실정이다. 따라서 본 논문에서는 멀티코어 아키텍처를 이용하여 실시간 차선이탈 감지 알고리즘을 병렬구현 한다. 또한, 차선이탈 감지 알고리즘을 위한 최적의 멀티코어 아키텍처의 구조를 탐색하기 위해 총 8가지의 서로 다른 프로세싱 엘리먼트 구조를 이용하여 실험하였고, 모의실험 결과 40×40의 프로세싱 엘리먼트 구조에서 최적의 성능, 에너지 효율 및 면적 효율을 보였다.

Keywords