References
- J. H. Hwang, H. Ryu, and U. R. Cho, A study on starchacrylic graft copolymerization by emulsion polymerization, Elastomer, 43, pp. 221-229, 2008.
- M.-S. Lee, H. Ryu, and U. R. Cho, A study on the synthesis of starch-acrylic polymer by emulsion polymerization, Polymer(Korea), 34, pp. 58-62, 2010.
- M.-C. Li, Y.-J. Mun, and U. R. Cho, Synthesis of environmental-friendly starch-acrylic coating sols by emulsion polymerization, Elastomers and composites, 45, pp. 272-279, 2010.
- M.-C. Li, J. K Lee, and U. R. Cho, Synthesis, characterization, and enzymatic degradation of starch?grafted poly (methyl methacrylate) copolymer films, Journal of Applied Polymer Science, 125, pp. 405-414, 2012. https://doi.org/10.1002/app.35620
- N. Wang, M. Li, and J. Zhang, Polymer-filled porous MCM-41: An effective means to design polymer-based nanocomposite, Materials Letters, 59, pp. 2685-2688, 2005. https://doi.org/10.1016/j.matlet.2005.04.020
- H. H. Baek, J. M. Lee, J. E. Cho, J. H. Cho, and J. H. Kim, Hydroxypropyl Methylcellulose-graft-Poly (ethyl acrylate-co-methyl methacrylate) Particles by Resinfortified Emulsion Polymerization, Macromolecular Research, 18, pp. 53-58, 2010. https://doi.org/10.1007/s13233-009-0097-9
- Y. Mansoori, S. V. Atghia, S. Shan Sanaei, M. R. Zamanloo, and G. Imanzadeh, PMMA-clay nanocomposite materials: Free-radically grafting of PMMA onto organophilic montmorillonite (20A), Macromolecular Research, 18, pp. 1174-1181, 2010. https://doi.org/10.1007/s13233-010-1209-2
- N. Wang, M. Li, and J. Zhang, Polymer-filled porous MCM-41: An effective means to design polymer-based nanocomposite, Materials Letters, 59, pp. 2685-2688, 2005. https://doi.org/10.1016/j.matlet.2005.04.020
- A. Zhu, A. Cai, J. Zhang, H. Jia, and J. Wang, PMMAgraftedsilica/PVC nanocomposites: Mechanical performance and barrier properties, Journal of Applied Polymer Science, 108, pp. 2189-2196, 2008. https://doi.org/10.1002/app.27863
- P. S. Chinthamanipeta, S. Kobukata, H. Nakata, and D. A. Shipp, Synthesis of poly (methyl methacrylate)-silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization, Polymer, 49, pp. 5636-5642, 2008. https://doi.org/10.1016/j.polymer.2008.10.018
- M. Wang, K. P. Pramoda, and S. H. Goh, Enhancement of the mechanical properties of poly (styrene-co-acrylonitrile) with poly(methyl methacrylate)-grafted multiwalled carbon nanotubes, Polymer, 46, pp. 11510-11516, 2005. https://doi.org/10.1016/j.polymer.2005.10.007
- M. Wang, J.-H. Shi, K. P. Pramoda, and S. H. Goh, Microstructure, crystallization and dynamic mechanical behaviour of poly(vinylidene fluoride) composites containing poly(methyl methacrylate)-grafted multiwalled carbon nanotubes, Nanotechnology, 18, 235701 (2007). https://doi.org/10.1088/0957-4484/18/23/235701
- C. Liu, Y. F. Luo, Z. X. Jia, B. C. Zhong, S. Q. Li, B. C. Guo, and D. M. Jia, Enhancement of mechanical properties of poly(vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube, Express Polymer Letters, 5, 591-603 (2011). https://doi.org/10.3144/expresspolymlett.2011.58
- G. Goncalves, P. A. A. P. Marques, A.Barros-Timmons, I. Bdkin, M. K. Singh, N. Emami, and J. Gracio, Graphene oxide modified with PMMA via ATRP as a reinforcement filler, Journal of Materials Chemistry, 20, pp.9927-9934, 2010. https://doi.org/10.1039/c0jm01674h
- S. Beyaz and T. Tanrisever, Emulsifier-free emulsion polymerization of methyl methacrylate containing hydrophilicd P. J. Herrera-Franco, Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites, Composites Part A: Applied Science and Manufacturing, 30, pp. 349-359, 1999. https://doi.org/10.1016/S1359-835X(98)00116-X
- X.-L. Xie, R. K.-Y. Li, Q.-X. Liu, and Y.-W. Mai, Structure-property relationships of in-situ PMMA modified nano-sized antimony trioxide filled poly(vinyl chloride) nanocomposites, Polymer, 45, pp. 2793-2802, 2004. https://doi.org/10.1016/j.polymer.2004.02.028
- 조을룡, 개질전분/SBR 생체복합재료의 제조와 물성, 고무기술지, 제 18권 제 1,2호, 2017.
- P. J. Flory and J. Rehner, Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling, The Journal of Chemical Physics, 11, pp. 512-518, 1943. https://doi.org/10.1063/1.1723791
- R. Chandra and R. Rustgi, Biodegradation of maleated linear low-density polyethylene and starch blends, Polymer Degradation and Stability, 56, pp. 185-202, 1997. https://doi.org/10.1016/S0141-3910(96)00212-1
- M. A. Lopez-Manchado, J. L. Valentin, J. Carretero, F. Barroso, and M. Arroyo, Rubber network in elastomer nanocomposites, European Polymer Journal, 43, pp. 4143-4150, 2007. https://doi.org/10.1016/j.eurpolymj.2007.07.023
- E. Guth, O. Gold, On the hydrodynamical theory of the viscosity of suspensions, Physical Reviews, 53, pp. 322 1938.
- E. Guth and O. Gold, Theory of filler reinforcement, Journal of Applied Physicals, 16, pp. 20-25, 1945. https://doi.org/10.1063/1.1707495
- J.C. Halpin, Stiffness and Expansion Estimates for Oriented Short Fiber Composites, Journal of Composite Materials, 3, pp. 732-734, 1969. https://doi.org/10.1177/002199836900300419
- J. L. Willett, Mechanical properties of LDPE/granular starch composites, Journal of Applied Polymer Science, 54, pp. 1685-1695, 1994. https://doi.org/10.1002/app.1994.070541112
- I. D. Danjaji, R. Nawang, U. S, Ishiaku, H. Ismail, and Z. A. M. Mohd Ishak, Degradation studies and moisture uptake of sago-starch-filled linear low-density polyethylene composites, Polymer Testing, 21, pp. 75-81, 2002. https://doi.org/10.1016/S0142-9418(01)00051-4
- C.-S. Wu, Physical properties and biodegradability of maleated-polycaprolactone/starch composite, Polymer degradation and stability, 80, pp. 127-134, 2003. https://doi.org/10.1016/S0141-3910(02)00393-2
- D. Bikiaris and C. Panayiotou, LDPE/starch blends compatibilized with PE-g-MA copolymers, Journal of Applied Polymer Science, 70, 1503-1521, 1998. https://doi.org/10.1002/(SICI)1097-4628(19981121)70:8<1503::AID-APP9>3.0.CO;2-#