DOI QR코드

DOI QR Code

Enzymatic Characteristics of a Highly Thermostable β-(1-4)-Glucanase from Fervidobacterium islandicum AW-1 (KCTC 4680)

  • Jeong, Woo Soo (Graduate School of Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Seo, Dong Ho (Graduate School of Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Jung, Jong Hyun (Graduate School of Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Jung, Dong Hyun (Graduate School of Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Lee, Dong-Woo (School of Applied Biosciences, Kyungpook National University) ;
  • Park, Young-Seo (Department of Food Science and Biotechnology, Gachon University) ;
  • Park, Cheon-Seok (Graduate School of Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University)
  • 투고 : 2016.09.19
  • 심사 : 2016.10.14
  • 발행 : 2017.02.28

초록

A highly thermostable ${\beta}-(1-4)-glucanase$ (NA23_08975) gene (fig) from Fervidobacterium islandicum AW-1, a native-feather degrading thermophilic eubacterium, was cloned and expressed in Escherichia coli. The recombinant FiG (rFiG) protein showed strong activity toward ${\beta}-{\small{D}}-glucan$ from barley (367.0 IU/mg), galactomannan (174.0 IU/mg), and 4-nitrophenyl-cellobioside (66.1 IU/mg), but relatively weak activity was observed with hydroxyethyl cellulose (5.3 IU/mg), carboxymethyl cellulose (2.4 IU/mg), and xylan from oat spelt (1.4 IU/mg). rFiG exhibited optimal activity at $90^{\circ}C$ and pH 5.0. In addition, this enzyme was extremely thermostable, showing a half-life of 113 h at $85^{\circ}C$. These results indicate that rFiG could be used for hydrolysis of cellulosic and hemicellulosic biomass substrates for biofuel production.

키워드

참고문헌

  1. Rothschild LJ, Mancinelli RL. 2001. Life in extreme environments. Nature 409: 1092-1101. https://doi.org/10.1038/35059215
  2. Sarmiento F, Peralta R, Blamey JM. 2015. Cold and hot extremozymes: industrial relevance and current trends. Front. Bioeng. Biotechnol. 3: 148.
  3. Elleuche S, Schroder C, Sahm K, Antranikian G. 2014. Extremozymes - biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 29: 116-123.
  4. Karaki N, Aljawish A, Humeau C, Muniglia L, Jasniewski J. 2016. Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review. Enzyme Microb. Technol. 90: 1-18. https://doi.org/10.1016/j.enzmictec.2016.04.004
  5. Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, et al. 2016. Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem. Sci. 41: 633-645. https://doi.org/10.1016/j.tibs.2016.04.006
  6. Sharma A, Tewari R, Rana SS, Soni R, Soni SK. 2016. Cellulases: classification, methods of determination and industrial applications. Appl. Biochem. Biotechnol. 8: 1346-1380.
  7. Alvarez C, Reyes-Sosa FM, Diez B. 2016. Enzymatic hydrolysis of biomass from wood. Microb. Biotechnol. 9: 149-156. https://doi.org/10.1111/1751-7915.12346
  8. Hua C, Yi H, Jiao L. 2011. Cloning and expression of the endo-1,3(4)-${\beta}$-glucanase gene from Paecilomyces sp. FLH30 and characterization of the recombinant enzyme. Biosci. Biotechnol. Biochem. 75: 1807-1812. https://doi.org/10.1271/bbb.110354
  9. Juturu V, Wu JC. 2014. Microbial exo-xylanases: a mini review. Appl. Biochem. Biotechnol. 174: 81-92. https://doi.org/10.1007/s12010-014-1042-8
  10. Nam GW, Lee DW, Lee HS , Lee NJ, Kim BC, Choe EA, et al. 2002. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178: 538-547. https://doi.org/10.1007/s00203-002-0489-0
  11. Lee YJ, Jeong H, Park GS, Kwak Y, Lee SJ, Lee SJ, et al. 2015. Genome sequence of a native-feather degrading extremely thermophilic eubacterium, Fervidobacterium islandicum AW-1. Stand. Genomic Sci. 10: 71. https://doi.org/10.1186/s40793-015-0063-4
  12. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  13. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  14. Wang Y, Wang X, Tang R, Yu S, Zheng B, Feng Y. 2010. A novel thermostable cellulase from Fervidobacterium nodosum. J. Mol. Catal. B Enzym. 66: 294-301. https://doi.org/10.1016/j.molcatb.2010.06.006
  15. Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, et al. 2013. Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl. Environ. Microbiol. 79: 4220-4229. https://doi.org/10.1128/AEM.00327-13
  16. Zverlov VV, Schantz N, Schwarz WH. 2005. A major new component in the cellulosome of Clostridium thermocellum is a processive endo-${\beta}$-1,4-glucanase producing cellotetraose. FEMS Microbiol. Lett. 249: 353-358. https://doi.org/10.1016/j.femsle.2005.06.037
  17. Bronnenmeier K, Rucknagel KP, Staudenbauer WL. 1991. Purification and properties of a novel type of exo-1,4-${\beta}$-glucanase (avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Eur. J. Biochem. 200: 379-385. https://doi.org/10.1111/j.1432-1033.1991.tb16195.x
  18. Zheng F, Ding S. 2013. Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Appl. Environ. Microbiol. 79: 989-996. https://doi.org/10.1128/AEM.02725-12
  19. Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW. 2009. Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J. Bacteriol. 191: 5697-5705. https://doi.org/10.1128/JB.00481-09
  20. Bhat MK. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383. https://doi.org/10.1016/S0734-9750(00)00041-0
  21. van Beilen JB, Li Z. 2002. Enzyme technology: an overview. Curr. Opin. Biotechnol. 13: 338-344. https://doi.org/10.1016/S0958-1669(02)00334-8
  22. Fernandes P. 2010. Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res. 2010: 862537.
  23. Turner P, Mamo G, Karlsson EN. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 9: 1-23. https://doi.org/10.1111/j.1462-5822.2006.00829.x

피인용 문헌

  1. Insight into biodegradation of cellulose by psychrotrophic bacterium Pseudomonas sp. LKR-1 from the cold region of China: optimization of cold-active cellulase production and the associated degradatio vol.27, pp.1, 2017, https://doi.org/10.1007/s10570-019-02798-y