DOI QR코드

DOI QR Code

Comparison of antioxidant activity and prevention of lymphocyte DNA damage by fruit and vegetable juices marketed in Korea

시판 천연 과일주스와 채소주스의 항산화능과 임파구 DNA 손상 방지 효능 비교

  • Cho, Miran (Department of Food & Nutrition, Hannam University) ;
  • Lee, Hye-Jin (Department of Food & Nutrition, Hannam University) ;
  • Kang, Myung-Hee (Department of Food & Nutrition, Hannam University) ;
  • Min, Hyesun (Department of Food & Nutrition, Hannam University)
  • 조미란 (한남대학교 식품영양학과) ;
  • 이혜진 (한남대학교 식품영양학과) ;
  • 강명희 (한남대학교 식품영양학과) ;
  • 민혜선 (한남대학교 식품영양학과)
  • Received : 2016.11.25
  • Accepted : 2017.01.16
  • Published : 2017.02.28

Abstract

Purpose: Fruit and vegetable juices are known to be rich sources of antioxidants, which have beneficial effects on diseases caused by oxidative stress. The purpose of this study was to directly compare the antioxidant activities of fruit and vegetable juices marketed in Korea. Methods: We analyzed four fruit juices, two vegetable juices, two yellow-green juices, and six mixed vegetable juices. Antioxidant activities were analyzed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) test, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonate) (ABTS) test, and oxygen radical absorbance capacity (ORAC) assay. Protective effects against DNA damage were determined using an ex vivo comet assay with human lymphocytes. Results: DPPH radical scavenging activities were in the following order: blueberry juice > mixed vegetable C juice > kale juice > mixed vegetable P juice > grape juice. ABTS radical scavenging activities were in the following order: blueberry juice > mixed vegetable C juice > grape juice > mixed vegetable P juice > kale juice. Peroxyl radical scavenging activities as assessed by ORAC assay were in the following order: blueberry juice > kale juice > mixed vegetable C juice > grape juice. Grape or blueberry juice showed strong abilities to prevent DNA damage in lymphocytes, and the difference between them was not significant according to the GSTM1/GSTT1 genotype. Conclusion: Antioxidant activities of fruit and vegetable juices and ex vivo DNA protective activity increased in the order of blueberry juice, grape juice, and kale juice, although the rankings were slightly different. Therefore, these juices rich in polyphenols and flavonoids deserve more attention for their high antioxidant capacity.

우리나라에서 많이 이용되고 있으며 항산화 활성이 높은 것으로 알려진 시판 100% 천연 과채류 주스 중 과일주스, 채소주스, 녹즙 및 채소혼합주스의 항산화 활성을 측정하여 비교하였다. 항산화 활성의 측정법으로는 DPPH, TEAC, ORAC 법 등 세 가지 in vitro 측정법과 comet assay를 이용한 ex vivo 분석법으로 과채류 주스의 항산화능을 비교 분석하였다. DPPH 분석법으로 항산화능을 측정한 결과 블루베리주스, 채소혼합주스 C, 케일 녹즙, 채소혼합주스 P, 포도주스 순으로 높았으며, TEAC 방법으로 측정한 주스 시료들의 항산화 활성은 블루베리주스, 채소혼합주스 C, 포도주스, 채소혼합주스 P, 케일 녹즙 순으로 높았다. 또한, ORAC으로 측정한 항산화 활성은 블루베리 주스, 케일 녹즙, 채소혼합주스 C, 포도주스, 오렌지주스 순으로 나타났다. 세 가지 in vitro 측정법에 따른 결과를 종합하였을 때 블루베리 주스가 항산화능이 가장 우수했으며 이어서 포도 주스, 채소혼합주스 C, 케일 녹즙 순으로 항산화 활성이 높았다. 인체의 임파구 DNA의 손상을 감소시키는 정도를 ex vivo 분석법인 comet assay로 분석한 결과 블루베리 주스와 포도 주스의 DNA 손상 감소 효과가 가장 우수한 것으로 나타난 반면, GSTM1/GSTT1 유전형에 따른 차이가 크지 않았다. 결론적으로 본 연구에서 조사한 국내에서 시판하고 있는 100% 천연 주스 14종 가운데 페놀성 화합물과 플라보노이드가 풍부한 것으로 알려진 블루베리 주스, 포도 주스의 항산화 활성이 가장 높았으며 채소혼합주스로는 안토시아닌이 풍부한 보라색을 띄는 주스류의 항산화 활성도가 높은 것으로 조사되었다.

Keywords

References

  1. Slavin JL, Lloyd B. Health benefits of fruits and vegetables. Adv Nutr 2012; 3(4): 506-516. https://doi.org/10.3945/an.112.002154
  2. Rimm EB, Ascherio A, Giovannucci E, Spiegelman D, Stampfer MJ, Willett WC. Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. JAMA 1996; 275(6): 447-451. https://doi.org/10.1001/jama.1996.03530300031036
  3. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller MJ, Oberritter H, Schulze M, Stehle P, Watzl B. Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 2012; 51(6): 637-663. https://doi.org/10.1007/s00394-012-0380-y
  4. Boyer J, Liu RH. Apple phytochemicals and their health benefits. Nutr J 2004; 3: 5. https://doi.org/10.1186/1475-2891-3-5
  5. Thomasset S, Berry DP, Cai H, West K, Marczylo TH, Marsden D, Brown K, Dennison A, Garcea G, Miller A, Hemingway D, Steward WP, Gescher AJ. Pilot study of oral anthocyanins for colorectal cancer chemoprevention. Cancer Prev Res (Phila) 2009; 2(7): 625-633. https://doi.org/10.1158/1940-6207.CAPR-08-0201
  6. Lee HR, Jung BR, Park JY, Hwang IW, Kim SK, Choi JU, Lee SH, Chung SK. Antioxidant activity and total phenolic contents of grape juice products in the Korean market. Korean J Food Preserv 2008; 15(3): 445-449.
  7. Jeong SM, Son MH, Lee SH. A survey on contents of phenolic compounds of market fruit and vegetables juices. J Basic Sci 2003; 18: 117-123.
  8. Blumberg JB, Vita JA, Chen CY. Concord grape juice polyphenols and cardiovascular risk factors: dose-response relationships. Nutrients 2015; 7(12): 10032-10052. https://doi.org/10.3390/nu7125519
  9. Lichtenthäler R, Marx F. Total oxidant scavenging capacities of common European fruit and vegetable juices. J Agric Food Chem 2005; 53(1): 103-110. https://doi.org/10.1021/jf0307550
  10. Lee BH, Kim SY, Cho CH, Chung DK, Chun OK, Kim DO. Estimation of daily per capita intake of total phenolics, total flavonoids, and antioxidant capacities from fruit and vegetable juices in the Korean diet based on the Korea National Health and Nutrition Examination Survey 2008. Korean J Food Sci Technol 2011; 43(4): 475-482. https://doi.org/10.9721/KJFST.2011.43.4.475
  11. Chung HJ. Comparison of physicochemical properties and physiological activities of commercial fruit juices. Korean J Food Preserv 2012; 19(5): 712-719. https://doi.org/10.11002/kjfp.2012.19.5.712
  12. Lee MH, Kim MS, Shin HG, Sohn HY. Evaluation of antimicrobial, antioxidant, and antithrombin activity of domestic fruit and vegetable juice. Korean J Microbiol Biotechnol 2011; 39(2): 146-152.
  13. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005; 53(6): 1841-1856. https://doi.org/10.1021/jf030723c
  14. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 2005; 53(10): 4290-4302. https://doi.org/10.1021/jf0502698
  15. Chen HM, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem 1998; 46(1): 49-53. https://doi.org/10.1021/jf970649w
  16. Ghiselli A, Serafini M, Maiani G, Azzini E, Ferro-Luzzi A. A fluorescence-based method for measuring total plasma antioxidant capability. Free Radic Biol Med 1995; 18(1): 29-36. https://doi.org/10.1016/0891-5849(94)00102-P
  17. Aruoma OI, Halliwell B, Williamson G. In vitro methods for characterizing potential prooxidant and antioxidant actions of nonnutritive substances in plant foods. In: Aruoma OI, Cuppet SL, editors. Antioxidant Methodology: In Vivo and In Vitro Concepts. Champaign (IL): AOCS Press; 1997. p.173-184.
  18. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988; 175(1): 184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  19. Park EJ, Kang MH. Application of the alkaline comet assay for detecting oxidative DNA damage in human biomonitoring. Korean J Nutr 2002; 35(2): 213-222.
  20. Strange RC, Spiteri MA, Ramachandran S, Fryer AA. Glutathione-S-transferase family of enzymes. Mutat Res 2001; 482(1-2): 21-26. https://doi.org/10.1016/S0027-5107(01)00206-8
  21. Bell DA, Taylor JA, Paulson DF, Robertson CN, Mohler JL, Lucier GW. Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst 1993; 85(14): 1159-1164. https://doi.org/10.1093/jnci/85.14.1159
  22. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 1994; 300(Pt 1): 271-276. https://doi.org/10.1042/bj3000271
  23. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers AE, Rietjens IM. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic Biol Med 2001; 31(7): 869-881. https://doi.org/10.1016/S0891-5849(01)00638-4
  24. Kim GD, Lee YS, Cho JY, Lee YH, Choi KJ, Lee Y, Han TH, Lee SH, Park KH, Moon JH. Comparison of the content of bioactive substances and the inhibitory effects against rat plasma oxidation of conventional and organic hot peppers (Capsicum annuum L.). J Agric Food Chem 2010; 58(23): 12300-12306. https://doi.org/10.1021/jf1028448
  25. Jeong CH, Choi SG, Heo HJ. Analysis of nutritional compositions and antioxidative activities of Korean commercial blueberry and raspberry. J Korean Soc Food Sci Nutr 2008; 37(11): 1375-1381. https://doi.org/10.3746/jkfn.2008.37.11.1375
  26. Seeram NP, Aviram M, Zhang Y, Henning SM, Feng L, Dreher M, Heber D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J Agric Food Chem 2008; 56(4): 1415-1422. https://doi.org/10.1021/jf073035s
  27. Vanzani P, Rossetto M, De Marco V, Rigo A, Scarpa M. Efficiency and capacity of antioxidant rich foods in trapping peroxyl radicals: a full evaluation of radical scavenging activity. Food Res Int 2011; 44(1): 269-275. https://doi.org/10.1016/j.foodres.2010.10.022
  28. Park YK, Kim JS, Kang MH. Concord grape juice supplementation reduces blood pressure in Korean hypertensive men: double-blind, placebo controlled intervention trial. Biofactors 2004; 22(1-4): 145-147. https://doi.org/10.1002/biof.5520220128
  29. Park YK, Lee SH, Park E, Kim JS, Kang MH. Changes in antioxidant status, blood pressure, and lymphocyte DNA damage from grape juice supplementation. Ann N Y Acad Sci 2009; 1171(1): 385-390. https://doi.org/10.1111/j.1749-6632.2009.04907.x
  30. Park YK, Park E, Kim JS, Kang MH. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans. Mutat Res 2003; 529(1-2): 77-86. https://doi.org/10.1016/S0027-5107(03)00109-X
  31. Jeon EJ, Kim JS, Park YK, Kim TS, Kang MH. Protective effect of yellow-green vegetable juices on DNA damage in Chinese hamster lung cell using comet assay. Korean J Nutr 2003; 36(1): 24-31.
  32. Kim HY, Park YK, Kim TS, Kang MH. The effect of green vegetable drink supplementation on cellular DNA damage and antioxidant status of Korean smokers. Korean J Nutr 2006; 39(1): 18-27.
  33. Lee SM, Park KY, Rhee SH. Antimutagenic effect and active compound analysis of kale juice in salmonella assay system. J Korean Soc Food Sci Nutr 1997; 26(5): 965-971.
  34. Chung SY, Kim HW, Yoon S. Analysis of antioxidant nutrients in green yellow vegetable juice. Korean J Food Sci Technol 1999; 31(4): 880-886.
  35. Chung SY, Kim NK, Yoon S. Nitrite scavenging effect of methanol fraction obtained from green yellow vegetable juices. J Korean Soc Food Sci Nutr 1999; 28(2): 342-347.

Cited by

  1. 재배지에 따른 노니열매 착즙액의 이화학적 특성, 생리활성 성분 및 항산화 활성 vol.24, pp.7, 2017, https://doi.org/10.11002/kjfp.2017.24.7.1000
  2. LPS로 유도된 RAW 264.7 세포에 대한 흑색 방울토마토 주스의 항염증 효과 vol.28, pp.5, 2017, https://doi.org/10.5352/jls.2018.28.5.569
  3. 섬쑥부쟁이와 쑥부쟁이의 항산화 및 지방세포 분화 억제 효과 vol.52, pp.3, 2017, https://doi.org/10.4163/jnh.2019.52.3.250
  4. Chemical Characterization and Anti-Radical Activity of Fruits and Vegetables Commonly Consumed in Brazzaville vol.11, pp.8, 2017, https://doi.org/10.4236/fns.2020.118055