DOI QR코드

DOI QR Code

Production of D-Xylonic Acid from Hemicellulose Using Artificial Enzyme Complexes

  • Lee, Charles C. (USDA-ARS-WRRC, Bioproducts Research Unit) ;
  • Kibblewhite, Rena E. (USDA-ARS-WRRC, Bioproducts Research Unit) ;
  • Paavola, Chad D. (NASA Ames Research Center) ;
  • Orts, William J. (USDA-ARS-WRRC, Bioproducts Research Unit) ;
  • Wagschal, Kurt (USDA-ARS-WRRC, Bioproducts Research Unit)
  • Received : 2016.06.16
  • Accepted : 2016.09.20
  • Published : 2017.01.28

Abstract

Lignocellulosic biomass represents a potentially large resource to supply the world's fuel and chemical feedstocks. Enzymatic bioconversion of this substrate offers a reliable strategy for accessing this material under mild reaction conditions. Owing to the complex nature of lignocellulose, many different enzymatic activities are required to function in concert to perform efficient transformation. In nature, large multienzyme complexes are known to effectively hydrolyze lignocellulose into constituent monomeric sugars. We created artificial complexes of enzymes, called rosettazymes, in order to hydrolyze glucuronoxylan, a common lignocellulose component, into its cognate sugar ${\small{D}}$-xylose and then further convert the ${\small{D}}$-xylose into ${\small{D}}$-xylonic acid, a Department of Energy top-30 platform chemical. Four different types of enzymes (endoxylanase, ${\alpha}$-glucuronidase, ${\beta}$-xylosidase, and xylose dehydrogenase) were incorporated into the artificial complexes. We demonstrated that tethering our enzymes in a complex resulted in significantly more activity (up to 71%) than the same amount of enzymes free in solution. We also determined that varying the enzyme composition affected the level of complex-related activity enhancement as well as overall yield.

Keywords

References

  1. Ren N, Wang A, Cao G, Xu J, Gao L. 2009. Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol. Adv. 27: 1051-1060. https://doi.org/10.1016/j.biotechadv.2009.05.007
  2. Kircher M. 2015. Sustainability of biofuels and renewable chemicals production from biomass. Curr. Opin. Chem. Biol. 29: 26-31. https://doi.org/10.1016/j.cbpa.2015.07.010
  3. Tyner WE. 2013. Biofuels and food prices: separating wheat from chaff. Glob. Food Sec. 2: 126-130. https://doi.org/10.1016/j.gfs.2013.05.001
  4. Balan V. 2014. Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol. 2014: 463074.
  5. McCann MC, Carpita NC. 2015. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. J. Exp. Bot. 66: 4109-4118. https://doi.org/10.1093/jxb/erv267
  6. Zhang GC, Liu JJ, Kong II, Kwak S, Jin YS. 2015. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr. Opin. Chem. Biol. 29: 49-57. https://doi.org/10.1016/j.cbpa.2015.09.008
  7. Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS. 2016. Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng. Life Sci. 16: 1-16. https://doi.org/10.1002/elsc.201400196
  8. Rennie EA, Scheller HV. 2014. Xylan biosynthesis. Curr. Opin. Biotechnol. 26: 100-107. https://doi.org/10.1016/j.copbio.2013.11.013
  9. Numan MT, Bhosle NB. 2006. ${\alpha}$-L-Arabinofuranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247-260. https://doi.org/10.1007/s10295-005-0072-1
  10. Poutanen K, Tenkanen M, Korte H, Puls J. 1991. Accessory enzymes involved in the hydrolysis of xylans, pp. 426-436. In Leatham GF, Himmel ME (eds.). Enzymes in Biomass Conversion. American Chemical Society, Washington, DC.
  11. Dutta S, Wu KCW. 2014. Enzymatic breakdown of biomass: Enzyme active sites, immobilization, and biofuel production. Green Chem. 16: 4615-4626. https://doi.org/10.1039/C4GC01405G
  12. Zheng HC, Sun MZ, Meng LC, Pei HS, Zhang XQ, Yan Z, et al. 2014. Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its appli cation in xylooligosaccharides production. J. Microbiol. Biotechnol. 24: 489-496. https://doi.org/10.4014/jmb.1312.12072
  13. Lee SH, Lee YE. 2014. Cloning and characterization of a multidomain GH10 xylanase from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 24: 1525-1535. https://doi.org/10.4014/jmb.1407.07077
  14. Lee SH, Lee YE. 2014. Cloning, expression, and characterization of a thermostable GH51 alpha-L-arabinofuranosidase from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 24: 236-244. https://doi.org/10.4014/jmb.1308.08078
  15. Li F, Xie J, Zhang X, Zhao L. 2015. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis. J. Microbiol. Biotechnol. 25: 11-17. https://doi.org/10.4014/jmb.1402.02055
  16. Werpy T, Peterson G. 2004. Top Value Added Chemicals From Biomass. Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Oak Ridge TN, US Department of Energy. Available at http://www.nrel.gov/docs/fy04osti/35523.pdf.
  17. Chun BW, Dair B, Macuch PJ, Wiebe D, Porteneuve C, Jeknavorian A. 2006. The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Appl. Biochem. Biotechnol. 131: 645-658. https://doi.org/10.1385/ABAB:131:1:645
  18. Zamora F, Bueno M, Molina I, Iribarren JI, Munoz-Guerra S, Galbis JA. 2000. Stereoregular copolyamides derived from D-xylose and L-arabinose. Macromolecules 33: 2030-2038. https://doi.org/10.1021/ma9916436
  19. Niu W, Molefe MN, Frost JW. 2003. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J. Am. Chem. Soc. 125: 12998-12999. https://doi.org/10.1021/ja036391+
  20. Sun L, Yang F, Sun H, Zhu T, Li X, Li Y, et al. 2016. Synthetic pathway optimization for improved 1,2,4-butanetriol production. J. Ind. Microbiol. Biotechnol. 43: 67-78. https://doi.org/10.1007/s10295-015-1693-7
  21. Bayer EA, Belaich J-P, Shoham Y, Lamed R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58: 521-554. https://doi.org/10.1146/annurev.micro.57.030502.091022
  22. Fontes CM, Gilbert HJ. 2010. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem. 79: 655-681. https://doi.org/10.1146/annurev-biochem-091208-085603
  23. Raman B, Pan C, Hurst GB, Rodri guez M J r, McKeown CK, Lankford PK, et al. 2009. Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4: e5271. https://doi.org/10.1371/journal.pone.0005271
  24. Borne R, Bayer EA, Pages S, Perret S, Fierobe HP. 2013. Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity. FEBS J. 280: 5764-5779. https://doi.org/10.1111/febs.12497
  25. McClendon SD, Mao Z, Shin HD, Wagschal K, Chen RR. 2012. Designer xylanosomes: protein nanostructures for enhanced xylan hydrolysis. Appl. Biochem. Biotechnol. 167: 395-411. https://doi.org/10.1007/s12010-012-9680-1
  26. Morais S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, et al. 2012. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio 3: e00508-e00512.
  27. Liang Y, Si T, Ang EL, Zhao H. 2014. Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 80: 6677-6684. https://doi.org/10.1128/AEM.02070-14
  28. Ou J, Cao Y. 2014. Incorporation of Nasutitermes takasagoensis endoglucanase into cell surface-displayed minicellulosomes in Pichia pastoris X33. J. Microbiol. Biotechnol. 24: 1178-1188. https://doi.org/10.4014/jmb.1402.02034
  29. Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. 2012. Selfsurface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc. Natl. Acad. Sci. USA 109: 13260-13265. https://doi.org/10.1073/pnas.1209856109
  30. Stern J, Morais S, Lamed R, Bayer EA. 2016. Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. MBio 7: e00083-e00016.
  31. Wheeldon I, Minteer SD, Banta S, Barton SC, Atanassov P, Sigman M. 2016. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8: 299-309. https://doi.org/10.1038/nchem.2459
  32. Mitsuzawa S, Kagawa H, Li Y, Chan SL, Paavola CD, Trent JD. 2009. The rosettazyme: a synthetic cellulosome. J. Biotechnol. 143: 139-144. https://doi.org/10.1016/j.jbiotec.2009.06.019
  33. Kagawa HK, Yaoi T, Brocchieri L, McMillan RA, Alton T, Trent JD. 2003. The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon. Mol. Microbiol. 48: 143-156. https://doi.org/10.1046/j.1365-2958.2003.03418.x
  34. McMillan RA, Howard J, Zaluzec NJ, Kagawa HK, Mogul R, Li YF, et al. 2005. A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. J. Am. Chem. Soc. 127: 2800-2801. https://doi.org/10.1021/ja043827s
  35. McMillan RA, Paavola CD, Howard J, Chan SL, Zaluzec NJ, Trent JD. 2002. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nat. Mater. 1: 247-252. https://doi.org/10.1038/nmat775
  36. Paavola CD, Chan SL, Li Y, Mazzarella KM, McMillan RA, Trent JD. 2006. A versatile platform for nanotechnology based on circular permutation of a chaperonin protein. Nanotechnology 17: 1171-1176. https://doi.org/10.1088/0957-4484/17/5/001
  37. Mishra S, Beguin P, Aubert JP. 1991. Transcription of Clostridium thermocellum endoglucanase genes celF and celD. J. Bacteriol. 173: 80-85. https://doi.org/10.1128/jb.173.1.80-85.1991
  38. Studier FW. 2005. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41: 207-234. https://doi.org/10.1016/j.pep.2005.01.016
  39. Lee CC, Kibblewhite-Accinelli RE, Smith MR, Wagschal K, Orts WJ, Wong DW. 2008. Cloning of Bacillus licheniformis xylanase gene and characterization of recombinant enzyme. Curr. Microbiol. 57: 301-305. https://doi.org/10.1007/s00284-008-9193-x
  40. Milner Y, Avigad G. 1967. A copper reagent for the determination of hexuronic acids and certain ketohexoses. Carbohydr. Res. 4: 359-361. https://doi.org/10.1016/S0008-6215(00)80191-3
  41. Wagschal K, Franqui-Espiet D, Lee CC, Robertson GH, Wong DW. 2005. Enzyme-coupled assay for ${\beta}$-xylosidase hydrolysis of natural substrates. Appl. Environ. Microbiol. 71: 5318-5323. https://doi.org/10.1128/AEM.71.9.5318-5323.2005
  42. Wagschal K, Jordan DB, Lee CC, Younger A, Braker JD, Chan VJ. 2015. Biochemical characterization of uronate dehydrogenases from three pseudomonads, Chromohalobacter salixigens, and Polaromonas naphthalenivorans. Enzyme Microb. Technol. 69: 62-68. https://doi.org/10.1016/j.enzmictec.2014.12.008
  43. Lee CC, Smith M, Kibblewhite-Accinelli RE, Williams TG, Wagschal K, Robertson GH, Wong DW. 2006. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 52: 112-116. https://doi.org/10.1007/s00284-005-4583-9
  44. Pell G, Taylor EJ, Gloster TM, Turkenburg JP, Fontes CM, Ferreira LM, et al. 2004. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279: 9597-9605. https://doi.org/10.1074/jbc.M312278200
  45. Lee CC, Kibblewhite RE, Wagschal K, Li R, Orts WJ. 2012. Isolation of ${\alpha}$-glucuronidase enzyme from a rumen metagenomic library. Protein J. 31: 206-211. https://doi.org/10.1007/s10930-012-9391-z
  46. Jordan DB. 2008. ${\beta}$-D-Xylosidase from Selenomonas ruminantium: catalyzed reactions with natural and artificial substrates. Appl. Biochem. Biotechnol. 146: 137-149. https://doi.org/10.1007/s12010-007-8064-4
  47. Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U. 2007. Genetic analysis of a novel pathway for Dxylose metabolism in Caulobacter crescentus. J. Bacteriol. 189: 2181-2185. https://doi.org/10.1128/JB.01438-06
  48. Liu H, Valdehuesa KNG, Nisola GM, Ramos KRM, Chung WJ. 2012. High yield producti on of D-xylonic acid from Dxylose using engineered Escherichia coli. Bioresour. Technol. 115: 244-248. https://doi.org/10.1016/j.biortech.2011.08.065
  49. Toivari M, Nygard Y, Kumpula EP, Vehkomaki ML, Bencina M, Valkonen M, et al. 2012. Metabolic engineering of Saccharomyces cerevisiae for bioconversi on of D-xylose to D-xylonate. Metab. Eng. 14: 427-436. https://doi.org/10.1016/j.ymben.2012.03.002

Cited by

  1. Upgrading of Biomass Monosaccharides by Immobilized Glucose Dehydrogenase and Xylose Dehydrogenase vol.10, pp.22, 2017, https://doi.org/10.1002/cctc.201801335
  2. Simple and Practical Multigram Synthesis of D-Xylonate Using a Recombinant Xylose Dehydrogenase vol.4, pp.6, 2017, https://doi.org/10.1021/acsomega.9b01090
  3. Coupled chemistry kinetics demonstrate the utility of functionalized Sup35 amyloid nanofibrils in biocatalytic cascades vol.294, pp.41, 2017, https://doi.org/10.1074/jbc.ra119.008455
  4. Facilitation of cascade biocatalysis by artificial multi-enzyme complexes - A review vol.28, pp.11, 2017, https://doi.org/10.1016/j.cjche.2020.05.022
  5. Organizing Multi-Enzyme Systems into Programmable Materials for Biocatalysis vol.11, pp.4, 2017, https://doi.org/10.3390/catal11040409
  6. Biomimetic Cellulosomes Assembled on Molecular Brush Scaffolds: Random Complexes vs Enzyme Mixtures vol.3, pp.4, 2017, https://doi.org/10.1021/acsapm.0c01407
  7. Glucan Conversion and Membrane Recovery of Biomimetic Cellulosomes During Lignocellulosic Biomass Hydrolysis vol.193, pp.9, 2017, https://doi.org/10.1007/s12010-021-03569-x