DOI QR코드

DOI QR Code

Antimicrobial Activity of the Scolopendrasin V Peptide Identified from the Centipede Scolopendra subspinipes mutilans

  • Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Mi-Ae (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ahn, Mi-Young (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yun, Eun-Young (Graduate School of Integrated Bioindustry, Sejong University) ;
  • Hwang, Jae Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2016.09.29
  • 심사 : 2016.10.14
  • 발행 : 2017.01.28

초록

In a previous study, we analyzed the transcriptome of Scolopendra subspinipes mutilans using next-generation sequencing technology and identified several antimicrobial peptide candidates. One of the peptides, scolopendrasin V, was selected based on the physicochemical properties of antimicrobial peptides using a bioinformatics strategy. In this study, we assessed the antimicrobial activities of scolopendrasin V using the radial diffusion assay and colony count assay. We also investigated the mode of action of scolopendrasin V using flow cytometry. We found that scolopendrasin V's mechanism of action involved binding to the surface of microorganisms via a specific interaction with lipopolysaccharides, lipoteichoic acid, and peptidoglycans, which are components of the bacterial membrane. These results provide a basis for developing peptide antibiotics.

키워드

참고문헌

  1. Ding Z, Zhao Y, Gao X. 1997. Medicinal insects in China. Ecol. Food Nutr. 36: 209-220. https://doi.org/10.1080/03670244.1997.9991516
  2. Namba T, Ma YH, Inagaki K. 1988. Insect-derived crude drugs in Chinese Song Dynasty. J. Ethnopharmacol. 24: 247-285. https://doi.org/10.1016/0378-8741(88)90157-2
  3. Pemberton RW. 1999. Insects and other arthropods used as drugs in Korean traditional medicine. J. Ethnopharmacol. 65: 207-216. https://doi.org/10.1016/S0378-8741(98)00209-8
  4. Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, Yu H. 2010. Two novel antimicrobial peptides from centipede venoms. Toxicon 55: 274-279. https://doi.org/10.1016/j.toxicon.2009.07.040
  5. Wenhua R, Shuangquan Z, Daxiang S, Kaiya Z, Guang Y. 2006. Induction, purification and characterization of an antibacterial peptide scolopendrin I from the venom of centipede Scolopendra subspinipes mutilans. Indian J. Biochem. Biophys. 43: 88-93.
  6. Rong M, Yang S, Wen B, Mo G, Kang D, Liu J, et al. 2015. Peptidomics combined with cDNA library unravel the diversity of centipede venom. J. Proteomics 114: 28-37. https://doi.org/10.1016/j.jprot.2014.10.014
  7. Yoo WG, Lee JH, Shin Y, Shim JY, Jung M, Kang BC, et al. 2014. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans. Funct. Integr. Genomics 14: 275-283. https://doi.org/10.1007/s10142-014-0366-3
  8. Lee JH, Kim IW, Kim MA, Yun EY, Nam SH, Ahn MY, et al. 2015. Scolopendrasin I: a novel antimicrobial peptide isolated from the centipede Scolopendra subspinipes mutilans. Int. J. Indust. Entomol. 31: 14-19. https://doi.org/10.7852/ijie.2015.31.1.14
  9. Kwon YN, Lee JH, Kim IW, Kim SH, Yun EY, Nam SH, et al. 2013. Antimicrobial activity of the synthetic peptide scolopendrasin ii from the centipede Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 23: 1381-1385. https://doi.org/10.4014/jmb.1306.06013
  10. Choi H, Hwang JS, Lee DG. 2014. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism. Insect Mol. Biol. 23: 788-799. https://doi.org/10.1111/imb.12124
  11. Lee W, Hwang JS, Lee DG. 2015. A novel antimicrobial peptide, scolopendin, from Scolopendra subspinipes mutilans and its microbicidal mechanism. Biochimie 118: 176-184. https://doi.org/10.1016/j.biochi.2015.08.015
  12. Lee H, Hwang JS, Lee DG. 2016. Scolopendin 2 leads to cellular stress response in Candida albicans. Apoptosis 21: 856-865. https://doi.org/10.1007/s10495-016-1254-1
  13. Lee H, Hwang JS, Lee J, Kim JI, Lee DG. 2015. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim. Biophys. Acta. 1848: 634-642. https://doi.org/10.1016/j.bbamem.2014.11.016
  14. Lee JH, Kim IW, Kim SH, Kim MA, Yun EY, Nam SH, et al. 2015. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 25: 1275-1280. https://doi.org/10.4014/jmb.1503.03091
  15. Park YJ, Lee HY, Jung YS, Park JS, Hwang JS, Bae YS. 2015. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1. BMB Rep. 48: 479-484. https://doi.org/10.5483/BMBRep.2015.48.8.115
  16. Scott MG, Hancock RE. 2000. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 20: 407-431.
  17. Powers JP, Hancock RE. 2003. The relationship between peptide structure and antibacterial activity. Peptides 24: 1681-1691. https://doi.org/10.1016/j.peptides.2003.08.023
  18. Hancock RE, Chapple DS. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317-1323.
  19. Hwang PM, Vogel HJ. 1998. Structure-function relationships of antimicrobial peptides. Biochem. Cell Biol. 76: 235-246. https://doi.org/10.1139/o98-026
  20. Fjell CD, Hiss JA, Hancock RE, Schneider G. 2012. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11: 37-51. https://doi.org/10.1038/nrd3591
  21. Jenssen H, Hamill P, Hancock RE. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19: 491-511. https://doi.org/10.1128/CMR.00056-05
  22. Lee J, Lee DG. 2015. Antimicrobial peptides (AMPs) with Dual mechanisms: membrane disruption and apoptosis. J. Microbiol. Biotechnol. 25: 759-764. https://doi.org/10.4014/jmb.1411.11058
  23. Rashid R, Veleba M, Kline KA. 2016. Focal targeting of the bacterial envelope by antimicrobial peptides. Front. Cell Dev. Biol. 4: 55.
  24. Steinberg DA, Lehrer RI. 1997. Designer assays for antimicrobial peptides. Methods Mol. Biol. 78: 169-186.
  25. Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M. 2006. Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta 1760: 1732-1740. https://doi.org/10.1016/j.bbagen.2006.09.006
  26. Boman HG. 2003. Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 254: 197-215. https://doi.org/10.1046/j.1365-2796.2003.01228.x
  27. Hale JD, Hancock RE. 2007. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther. 5: 951-959. https://doi.org/10.1586/14787210.5.6.951

피인용 문헌

  1. RAW 264.7 세포에서 왕지네 추출물의 항염 활성 vol.51, pp.4, 2017, https://doi.org/10.4163/jnh.2018.51.4.323
  2. Parallel Evolution of Complex Centipede Venoms Revealed by Comparative Proteotranscriptomic Analyses vol.36, pp.12, 2017, https://doi.org/10.1093/molbev/msz181
  3. Inhibitory effect of milk-derived peptide αS2-casein151-181 against spore-forming bacteria vol.104, pp.None, 2017, https://doi.org/10.1016/j.idairyj.2020.104651
  4. BV-2 미세아교세포에서 왕귀뚜라미 유래 Teleogryllusine의 신경염증 억제 효과 vol.30, pp.11, 2017, https://doi.org/10.5352/jls.2020.30.11.999
  5. Harvesting of Antimicrobial Peptides from Insect (Hermetia illucens) and Its Applications in the Food Packaging vol.11, pp.15, 2017, https://doi.org/10.3390/app11156991