DOI QR코드

DOI QR Code

Recovery and Recycling of Nitrogen and Phosphorus as Struvite from Livestock Excreta

가축분뇨로부터 struvite 결정화에 의한 질소 (N), 인 (P) 회수 및 자원화 방안 고찰

  • Ryu, Hong-Duck (Watershed and Total Load Management Division, National Institute of Environmental Research) ;
  • Ahn, Ki Hong (Watershed and Total Load Management Division, National Institute of Environmental Research) ;
  • Chung, Eu Gene (Watershed and Total Load Management Division, National Institute of Environmental Research) ;
  • Kim, Yongseok (Watershed and Total Load Management Division, National Institute of Environmental Research) ;
  • Rhew, Doughee (Watershed and Total Load Management Division, National Institute of Environmental Research)
  • Received : 2016.08.24
  • Accepted : 2016.09.30
  • Published : 2017.01.31

Abstract

This study evaluated the feasibility of recovering and recycling nitrogen (N) and phosphorus (P) from livestock excreta as struvite ($MgNH_4PO_4{\cdot}6H_2O$) in South Korea. Our experimental results showed that struvite precipitation was a very effective way to recover N and P from livestock excreta. Moreover, our study demonstrated that struvite precipitates from livestock excreta (SPL) contain higher concentrations of N, P, and magnesium (Mg) as compared to compost and liquid manure from livestock excreta. In addition, although SPL contain high concentrations of copper (Cu) and zinc (Zn), they meet the fertilizer criteria for concentrations of heavy metals. In South Korea, SPL cannot currently be used as a fertilizer due to legal constraints. Legal permission for SPL use would offer greater choice in livestock excreta management. In conclusion, recovery and recycling of N and P from livestock excreta as struvite can be an effective tool for managing nutrients in livestock excreta.

Keywords

References

  1. An, J. Y., Kwon, J. C., Ahn, D. W., Shin, D. H., Shin, H. S., Kim, B. W., 2007, Efficient nitrogen removal in a pilot system based on upflow multi-layer bioreactor for treatment of strong nitrogenous swine wastewater, Process Biochem., 42, 764-772. https://doi.org/10.1016/j.procbio.2007.01.020
  2. APHA., AWWA., WEF., 2005, Standard methods for the examination of water and Wastewater, 21st ed. Washington DC:National Government Publication.
  3. Basakcilardan-Kabakci, S., Thompson, A., Cartmell, E., Le Corre, K., 2007, Adsorption and precipitation of tetracycline with struvite, Water Environ. Res., 79, 2551-2556. https://doi.org/10.2175/106143007X184618
  4. Bernal, M. P., Alburquerque, J. A., Moral, R., 2009, Composting of animal manures and chemical criteria for compost maturity assessment, A Review, Bioresource Technol., 100, 5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027
  5. Buchanan, J. R., Mote, C. R., Robinson, R. B., 1994, Thermodynamics of struvite formation, T. ASAE., 37(2), 617-621. https://doi.org/10.13031/2013.28121
  6. Burns, R. T., Moody, L. B., Walker, F. R., Raman, D. R., 2001, Laboratory in situ reductions of soluble phosphorus in swine waste slurries, Environ. Technol., 22, 1273-1278. https://doi.org/10.1080/09593332208618190
  7. Cerrillo, M., Palatsi, J., Comas, J., Vicens, J., Bonmatí, A., 2015, Struvite precipitation as a technology to be integrated in a manure anaerobic digestion treatment plant-removal efficiency, crystal characterization and agricultural assessment, J. Chem. Technol. Biot., 90, 1135-1143. https://doi.org/10.1002/jctb.4459
  8. de-Bashan, L. E., Bashan, Y., 2004, Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003), Water Res., 38, 4222-4246. https://doi.org/10.1016/j.watres.2004.07.014
  9. Dupas, R., Delmas, M., Dorioz, J., Garnier, J., Moatar, F., Gascuel-Odoux, C., 2015, Assessing the impact of agricultural pressures on N and P loads and eutrophication risk, Ecol. Indic., 48, 396-407. https://doi.org/10.1016/j.ecolind.2014.08.007
  10. Ferretti, J., Calesso, D., 2011, Toxicity of ammonia to surf clam (Spisula solidissima) larvae in saltwater and sediment elutriates, Mar. Environ. Res., 71, 189-194. https://doi.org/10.1016/j.marenvres.2011.01.002
  11. Gaterell, M. R., Gay, R., Wilson, R., Gochin, R. J., Lester, J. N., 2000, An Economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markets, Environ. Technol., 21, 1067-1084. https://doi.org/10.1080/09593332108618050
  12. Go, W. R., Kim, J. Y., Yoo, J. H., Lee, J. H., Kunhikrishnan, A., Lee, J. M., Kim, K. H., Kim, D. H., Kim, W. I., 2012, Monitoring of heavy metals in agricultural soils from consecutive applications of commercial liquid pig manure, Korean J. Environ. Agric., 31(3), 217-223. https://doi.org/10.5338/KJEA.2012.31.3.217
  13. Huang, H., Chen, Y., Jiang, Y., Ding, L., 2014a, Treatment of swine wastewater combined with MgO-saponification wastewater by struvite precipitation technology, Chem. Eng. J., 254, 418-425. https://doi.org/10.1016/j.cej.2014.05.054
  14. Huang, H., Jiang, Y., Ding, L., 2014b, Recovery and removal of ammonia-nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product, Bioresource Technol., 172, 253-259. https://doi.org/10.1016/j.biortech.2014.09.024
  15. Hseu, Z. Y., 2004, Evaluating heavy metal contents in nine composts using four digestion methods, Bioresource Technol., 95, 53-59. https://doi.org/10.1016/j.biortech.2004.02.008
  16. Ihnat, M., Fernandes, L., 1996, Trace elemental characterization of composted poultry manure, Bioresource Technol., 57, 143-156. https://doi.org/10.1016/0960-8524(96)00061-2
  17. Johnston, A. E., Richards, I. R., 2003, Effectiveness of different precipitated phosphorus as phosphorus sources for plants, Soil Use Manage., 19, 45-49. https://doi.org/10.1111/j.1475-2743.2003.tb00278.x
  18. Jordaan, E. M., Ackerman, J., Cicek, N., 2010, Phosphorus removal from anaerobically digested swine wastewater through struvite precipitation, Water Sci. Technol., 61(12), 3228-3234. https://doi.org/10.2166/wst.2010.232
  19. Kim, J. G., Lee, K. B., Lee, D. B., Lee, S. B., Na, S. Y., 2004, Influence of liquid pig manure on rice growth and nutrient movement in paddy soil under different drainage conditions, Korean J. Soil Sci. Fert., 37(2), 97-103.
  20. Kim, D., Ryu, H. D., Kim, M. S., Kim, J., Lee, S. I., 2007, Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate, J. Hazard. Mater., 146, 81-85. https://doi.org/10.1016/j.jhazmat.2006.11.054
  21. Kim, M. K., Kwon, S. I., Kang, S. S., Jung, G. B., Kang, K. K., 2011, Changes of soil properties in corn (Zea mays L.) fields treated with compost and liquid fertilizer, Korean J. Soil Sci. Fert., 44(3), 473-478. https://doi.org/10.7745/KJSSF.2011.44.3.473
  22. Ko, H. J., Kim, K. Y., Kim, H. T., Kim, C. N., Umeda, M., 2008, Evaluation of maturity parameters and heavy metal contents in composts made from animal manure, Waste Manage., 28, 813-820. https://doi.org/10.1016/j.wasman.2007.05.010
  23. Kunkle, W. E., Carr, L. E., Carter, T. A., Bossard, E. H., 1981, Effect of flock and floor type on levels of nutrients and heavy metals in broiler litter, Poultry Sci., 60, 1160-1164. https://doi.org/10.3382/ps.0601160
  24. Kwon, Y. R., Kim, J., Ahn, B. K., Lee, S. B., 2010, Effect of liquid pig manure and synthetic fertilizer on rice growth, yield, and quality, Korean J. Environ. Agric., 29(1), 54-60. https://doi.org/10.5338/KJEA.2010.29.1.054
  25. Lee, S. I., Weon, S. Y., Lee, C. W., Koopman, B., 2003, Removal of nitrogen and phosphate from wastewater by addition of bittern, Chemosphere, 51, 265-271. https://doi.org/10.1016/S0045-6535(02)00807-X
  26. Lee, K. S., Kim, W. J., 2009, The development and use of fertilizer for 40 years in Korea, Korean J. Soil Sci. Fert., 42, 195-211.
  27. Lee, J. H., Go, W. R., Kunhikrishnan, A., Yoo, J. H., Kim, J. Y., Kim, W. I., 2011, Chemical composition and heavy metal contents in commercial liquid pig manures, Korean J. Soil Sci. Fert., 44(6), 1085-1088. https://doi.org/10.7745/KJSSF.2011.44.6.1085
  28. Li, X. Z., Zhao, Q. L., 2003, Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer, Ecol. Eng., 20, 171-181. https://doi.org/10.1016/S0925-8574(03)00012-0
  29. Lim, Y. C., Yoon, S. H., Kim, W. H., Kim, J. G., Shin, J. S., Jung, M. W., Seo, S., Yook, W. B., 2006, Effects of livestock manure application on growth characteristics, yield and feed value of sorghum-sudangrass hybrid and $NO_3$-N leaching in paddy field, J. Korean Grassl. Sci., 26(4), 233-238. https://doi.org/10.5333/KGFS.2006.26.4.233
  30. Lim, T. J., Hong, S. D., Kim, S. H., Park, J. M., 2008, Evaluation of yield and quality from red pepper for application rates of pig slurry composting biofiltration, Korean J. Environ. Agric., 27(2), 171-177. https://doi.org/10.5338/KJEA.2008.27.2.171
  31. Liu, Y., Kwag, J. H., Kim, J. H., Ra, C., 2011, Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater, Desalination, 277, 364-369. https://doi.org/10.1016/j.desal.2011.04.056
  32. Liu, B., Giannis, A., Jhang, J., Chang, V. W. C., Wang, J. Y., 2013, Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources, Chemosphere, 93, 2738-2747. https://doi.org/10.1016/j.chemosphere.2013.09.025
  33. Ministry of Environment, 2015, 2015 White paper of environment, 265-266.
  34. Munch, E. V., Barr, K., 2001, Controlled struvite crystallization for removing phosphorus from anaerobic digester side-streams, Water Res., 35, 151-159. https://doi.org/10.1016/S0043-1354(00)00236-0
  35. Muirhead, R. W., Collins, R. P., Bremer, P. J., 2006, Interaction of Escherichia coli and soil particles in runoff, Appl. Environ. Microb., 72, 3406-3411. https://doi.org/10.1128/AEM.72.5.3406-3411.2006
  36. Nam, Y., Yong, S. H., Song, K. K., 2010, Evaluating quality of fertilizer manufactured (livestock manure compost) with different sources in Korea, Korean J. Soil Sci. Fert., 43(5), 644-649.
  37. Nelson, N., Mikkelsen, R. L., Hesterberg, D. L., 2003, Struvite precipitation in anaerobic swine lagoon liquid: Effect of pH and Mg:P ratio and determination of rate constant, Bioresource Technol., 89, 229-236. https://doi.org/10.1016/S0960-8524(03)00076-2
  38. Ostara Nutrient Recovery Technology Inc., 2015, http://ostara.com/nutrients/
  39. Park, J. M., Lim, T. J., Lee, S. E., 2012, Effect of pig slurry application on the mineral content of leaf, fruit quality and soil chemical properties in pear orchard, Korean J. Soil Sci. Fert., 45(2), 209-214. https://doi.org/10.7745/KJSSF.2012.45.2.209
  40. Perera, P. W. A., Han, Z. Y., Chen, Y. X., Wu, W. X., 2007, Recovery of nitrogen and phosphorous as struvite from swine waste biogas digester effluent, Biomed. Environ. Sci., 20, 343-350.
  41. Perera, P. W. A., Wu, W. X., Chen, Y. X., Han, Z. Y., 2009, Struvite recovery from swine waste biogas digester effluent through a stainless steel device under constant pH conditions, Biomed. Environ. Sci., 22, 201-209. https://doi.org/10.1016/S0895-3988(09)60046-5
  42. Petersen, S. O., Sommer, S. G., Beline, F., Burton, C., Dach, J., Dourmad, J. Y., Leip, A., Misselbrook, T., Nicholson, F., Poulsen, H. D., Provolo, G., Sorensen, P., Vinneras, B., Weiske, A., Bernal, M. P., Bohm, R., Juhasz, C., Mihelic, R., Recycling of livestock manure in a whole-farm perspective, Livest. Sci., 112, 180-191.
  43. Puckett, L. J., 1995, Identifying the major sources of nutrient water pollution, Environ. Sci. Technol., 29, 408-414. https://doi.org/10.1021/es00009a743
  44. Rahman, M., Liu, Y., Kwag, J. H., Ra, C., 2011, Recovery of struvite from animal wastewater and its nutrient leaching loss in soil, J. Hazard. Mater., 186, 2026-2030. https://doi.org/10.1016/j.jhazmat.2010.12.103
  45. Ryu, H. D., Lee, S. I., 2010, Application of struvite precipitation as a pretreatment in treating swine wastewater, Process Biochem., 45, 563-572. https://doi.org/10.1016/j.procbio.2009.12.002
  46. Ryu, H. D., Lee, S. I., 2016, Struvite recovery from swine wastewater and its assessment as a fertilizer, Environ. Eng. Res., 21, 29-35. https://doi.org/10.4491/eer.2015.066
  47. Uludag-Demirer, S., Demirer, G. N., Chen, S., 2005, Ammonia removal from anaerobically digested dairy manure by struvite precipitation, Process Biochem., 40, 3667-3674. https://doi.org/10.1016/j.procbio.2005.02.028
  48. Wang, M., Yang, H., Ergas, S. J., van der Steen, P., 2015, A Novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor (PSBR), Water Res., 87, 38-48. https://doi.org/10.1016/j.watres.2015.09.016
  49. Wikimedia Foundation Inc., 2016, https://en.wikipedia.org/wiki/Struvite
  50. Ye, Z. L., Chen, S. H., Lu, M., Shi, J. W., Lin, L. F., Wang, S. M., 2011, Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source, Water Sci. Technol., 64, 334-340. https://doi.org/10.2166/wst.2011.720
  51. Yetilmezsoy, K., Sapci-Zengin, Z., 2009, Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer, J. Hazard. Mater., 166, 260-269. https://doi.org/10.1016/j.jhazmat.2008.11.025
  52. Zhang, D. M., Chen, Y. X., Jilani, G., Wu, W. X., Liu, W. L., Han, Z. Y., 2012, Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants, Bioresource Technol., 116, 386-395. https://doi.org/10.1016/j.biortech.2012.03.107