DOI QR코드

DOI QR Code

Fabrication of Metal-organic Frameworks Using an Photoisomerizable Azobenzene Ligand

광이성질화 현상을 갖는 아조벤젠 리간드와 이를 사용한 금속-유기구조체 제조

  • Yoon, Yeoju (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Jang, Geunseok (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Taek Seung (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 윤여주 (충남대학교 유기소재.섬유시스템공학과) ;
  • 장근석 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이택승 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2017.01.13
  • Accepted : 2017.02.16
  • Published : 2017.02.28

Abstract

Metal-organic frameworks (MOFs) were prepared by a reaction of 4,4'-(diazene-1,2-diyl)dibenzoic acid (AzDC) as organic ligand and metal ions including zinc, iron (III), copper, and cobalt ions, respectively. Because the synthesized AzDC contained azobenzene and carboxylic acids groups at each ends, it showed trans-to-cis photoisomerization upon UV irradiation and interaction with metal ions, respectively. The AzDC showed more efficient photoisomerization upon exposure to UV light (365 nm), rather than UV light at 254 nm, mainly due to the larger absorption around 365 nm than 254 nm. The isomerization of cis-to-trans azobenzene was observed under ambient light. The resultant MOFs containing AzDC ligand showed photo-triggered conversion of trans- to cis-azobenzene after exposure to UV light. Thus, the porous structure and photo-induced dimensional deformation of the MOFs enable to use in chemical sensing, gas separation, gas storage, catalysis, and drug delivery.

Keywords

References

  1. N. Stock and S. Biswas, "Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites", Chem. Rev., 2012, 112, 933-969. https://doi.org/10.1021/cr200304e
  2. V. H. Nguyen, N. P. T. Nguyen, T. T. N. Nguyen, T. T. T. Le, V. N. Le, Q. C. Nguyen, T. Q. Ton, T. H. Nguyen, and T. P. T. Nguyen, "Synthesis and Characterization of Zinc-Organic Frameworks with 1,4-benzenedicarboxylic Acid and azobenzene-4,4'-dicarboxylic Acid", Adv. Nat. Sci.: Nanosci. Nanotechnol., 2011, 2, 025008. https://doi.org/10.1088/2043-6262/2/2/025008
  3. R. Lyndon, K. Konstas, B. P. Ladewig, P. D. Southon, C. J. Kepert, and M. R. Hill, "Dynamic Photo-Switching in Metal-Organic Frameworks as a Route to Low-Energy Carbon Dioxide Capture and Release", Angew. Chem. Int. Ed., 2013, 52, 3695-3698. https://doi.org/10.1002/anie.201206359
  4. J. W. Brown, B. L. Henderson, M. D. Kiesz, A. C. Whalley, W. Morris, S. Grunder, H. Deng, H. Furukawa, J. I. Zink, J. Fraser Stoddart, and O. M. Yaghi, "Photophysical Pore Control in an Azobenzene Containing Metal-Organic Framework", Chem. Sci., 2013, 4, 2858-2864. https://doi.org/10.1039/c3sc21659d
  5. A. Schaate, S. Duhnen, G. Platz, S. Lilienthal, A. M. Schneider, and P. Behrens, "A Novel Zr-Based Porous Coordination Polymer Containing Azobenzenedicarboxylate as a Linker", Eur. J. Inorg. Chem., 2012, 790-796.
  6. S. Khanjani and A. Morsali, "Ultrasound-Promoted Coating of MOF-5 on Silk Fiber and Study of Adsorptive Removal and Recovery of Hazardous Anionic Dye "Congo Red"", Ultrasonics Sonochem., 2014, 21, 1424-1429. https://doi.org/10.1016/j.ultsonch.2013.12.012
  7. S. T. Meek, J. A. Greathouse, and M. D. Allendorf, "Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials", Adv. Mater., 2011, 23, 249-267. https://doi.org/10.1002/adma.201002854
  8. J. Y. Choi, J. Kim, S. H. Jhung, H. K. Kim, J. S. Chang, and H. K. Chae, "Microwave Synthesis of a Porous Metal-Organic Framework, Zinc Terephthalate MOF-5", Bull. Korean Chem. Soc., 2006, 27, 1523-1524. https://doi.org/10.5012/bkcs.2006.27.10.1523
  9. G. Abellan, H. Garcia, C. J. Gomez-Garcia, and A. Ribera, "Photochemical Behavior in Azobenzene Having Acidic Groups. Preparation of Magnetic Photoresponsive Gels", J. Photochem. Photobio. A: Chem., 2011, 217, 157-163. https://doi.org/10.1016/j.jphotochem.2010.10.003
  10. T. Nägele, R. Hoche, W. Zinth, and J. Wachtveitl, "Femtosecond Photoisomerization of Cis-Azobenzene", Chem. Phys. Lett., 1997, 272, 489-495. https://doi.org/10.1016/S0009-2614(97)00531-9
  11. H. Sell, C. Näther, and R. Herges, "Amino-Substituted Diazocines as Pincer-Type Photochromic Switches", Org. Chem., 2013, 9, 1-7.
  12. I. K. Lednev, T.-Q. Ye, R. E. Hester, and J. N. Moore, "Femtosecond Time-Resolved UV-Visible Absorption Spectroscopy of Trans-Azobenzene in Solution", Phys. Chem., 1996, 100, 13338-13341. https://doi.org/10.1021/jp9610067
  13. I. K. Lednev, T.-Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, "Femtosecond Time-Resolved UV-Visible Absorption Spectroscopy of Trans-Azobenzene: Dependence on Excitation Wavelength", Chem. Phys. Lett., 1998, 290, 68-74. https://doi.org/10.1016/S0009-2614(98)00490-4
  14. P. Ahonen, D. J. Schiffrin, J. Paprotnyb, and K. Kontturi, "Optical Switching of Coupled Plasmons of Ag-Nanoparticles by Photoisomerisation of an Azobenzene Ligand", Phys. Chem. Chem. Phys., 2007, 9, 651-658. https://doi.org/10.1039/B615309G
  15. I. Mita, K. Horie, and K. Hirao, "Photochemistry in Polymer Solids. 9. Photoisomerization of Azobenzene in a Polycarbonate Film", Macromolecules, 1989, 22, 558-563. https://doi.org/10.1021/ma00192a008
  16. Z. Wang, L. Heinke, J. Jelic, M. Cakici, M. Dommaschk, R. J. Maurer, H. Oberhofer, S. Grosjean, R. Herges, S. Brase, K. Reuterb, and C. Wolla, "Photoswitching in Nanoporous, Crystalline Solids: An Experimental and Theoretical Study for Azobenzene Linkers Incorporated in MOFs", Phys. Chem. Chem. Phys., 2015, 17, 14582-14587. https://doi.org/10.1039/C5CP01372K
  17. S. Zhang, J. Ma, X. Zhang, E. Duan, and P. Cheng, "Assembly of Metal-Organic Frameworks Based on 3,3',5,5'-azobenzenetetracarboxylic acid: Photoluminescences, Magnetic Properties, and Gas Separations", Inorg. Chem., 2015, 54, 586-595. https://doi.org/10.1021/ic502488c
  18. R. Kroger, H. Menzel, and M. L. Hallensleben, "Light Controlled Solubility Change of Polymers: Copolymers of N,N-dimethylacrylamide and 4-Phenylazophenyl Acrylate", Macromol. Chem. Phys., 1994, 195, 2291-2298. https://doi.org/10.1002/macp.1994.021950701

Cited by

  1. Preparation of liquid marbles using an azobenzene-based metal-organic framework particles vol.660, pp.1, 2018, https://doi.org/10.1080/15421406.2018.1456079