DOI QR코드

DOI QR Code

Hydrothermal Carbonization and Characterization of Glucose in the Presence of a Copper Catalyst

구리촉매를 이용한 글루코스의 열수탄화 및 특성 분석

  • Song, Younghan (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Kim, Changhyun (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Kim, Hyungsup (Department of Organic and Nano System Engineering, Konkuk University)
  • 송영한 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 김창현 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 김형섭 (건국대학교 공과대학 유기나노시스템공학과)
  • Received : 2016.12.05
  • Accepted : 2017.02.07
  • Published : 2017.02.28

Abstract

Recently, carbonaceous structures have drawn considerable attention owing to their electrochemical, mechanical, and thermal properties. Compared to conventional carbonization processes, hydrothermal carbonization has many merits, such as its relatively low processing temperature (below $400^{\circ}C$) and simple apparatus. In this study, hydrothermal carbonized structures were fabricated using a glucose solution of varying concentrations in the presence of a copper catalyst. The copper catalyst decreased the diameter of the hydrothermal-carbonized sphere. When the glucose concentration was low, the shape of the hydrothermal-carbonized material changed from spherical to planar.

Keywords

References

  1. S. Park and R. S. Ruoff, "Chemical Methods for the Production of Graphenes", Nat. Nanotech., 2009, 4, 217-224. https://doi.org/10.1038/nnano.2009.58
  2. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, "Synthesis of N-doped Graphene by Chemical Vapor Deposition and Its Electrical Properties", Nano Lett., 2009, 9, 1752-1758. https://doi.org/10.1021/nl803279t
  3. Y. Liu, A. Erdemir, and E. Meletis, "An Investigation of the Relationship between Graphitization and Frictional Behavior of DLC Coatings", Sur. Coat. Tech., 1996, 86, 564-568.
  4. D. Edie, "The Effect of Processing on the Structure and Properties of Carbon Fibers", Carbon, 1998, 36, 345-362. https://doi.org/10.1016/S0008-6223(97)00185-1
  5. B. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti, and M. M. Titirici, "Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass", Adv. Mater., 2010, 22, 813-828. https://doi.org/10.1002/adma.200902812
  6. S. Karagöz, T. Bhaskar, A. Muto, Y. Sakata, T. Oshiki, and T. Kishimoto, "Low-temperature Catalytic Hydrothermal Treatment of Wood Biomass: Analysis of Liquid Products", Chem. Eng. J., 2005, 108, 127-137. https://doi.org/10.1016/j.cej.2005.01.007
  7. S. Karagoz, T. Bhaskar, A. Muto, Y. Sakata, and M. A. Uddin, "Low-temperature Hydrothermal Treatment of Biomass: Effect of Reaction Parameters on Products and Boiling Point Distributions", Energy Fuels, 2004, 18, 234-241. https://doi.org/10.1021/ef030133g
  8. M. Sasaki, T. Adschiri, and K. Arai, "Fractionation of Sugarcane Bagasse by Hydrothermal Treatment", Bioresour. Technol., 2003, 86, 301-304. https://doi.org/10.1016/S0960-8524(02)00173-6
  9. M. Sevilla and A. B. Fuertes, "Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides", Chem. Eur. J., 2009, 15, 4195-4203. https://doi.org/10.1002/chem.200802097
  10. M.-M. Titirici, M. Antonietti, and N. Baccile, "Hydrothermal Carbon from Biomass: a Comparison of the Local Structure from Poly-to Monosaccharides and Pentoses/hexoses", Green Chem., 2008, 10, 1204-1212. https://doi.org/10.1039/b807009a
  11. C. Falco, N. Baccile, and M.-M. Titirici, "Morphological and Structural Differences between Glucose, Cellulose and Lignocellulosic Biomass Derived Hydrothermal Carbons", Green Chem., 2011, 13, 3273-3281. https://doi.org/10.1039/c1gc15742f
  12. Q. Wang, F. Cao, Q. Chen, and C. Chen, "Preparation of Carbon Micro-spheres by Hydrothermal Treatment of Methylcellulose Sol", Mater. Lett., 2005, 59, 3738-3741. https://doi.org/10.1016/j.matlet.2005.06.046
  13. W. Zhang, B. Mu, A. Wang, and S. Shao, "Attapulgite Oriented Carbon/polyaniline Hybrid Nanocomposites for Electrochemical Energy Storage", Synth. Met., 2014, 192, 87-92. https://doi.org/10.1016/j.synthmet.2014.03.021
  14. W. Zhang, B. Mu, and A. Wang, "Halloysite Nanotubes Template-induced Fabrication of Carbon/manganese Dioxide Hybrid Nanotubes for Supercapacitors", Ionics, 2015, 21, 2329-2336. https://doi.org/10.1007/s11581-015-1412-4
  15. K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang, and J.-Y. Lee, "Graphene-like $MoS_2$/amorphous Carbon Composites with High Capacity and Excellent Stability as Anode Materials for Lithium Ion Batteries", J. Mater. Chem., 2011, 21, 6251-6257. https://doi.org/10.1039/c1jm10174a

Cited by

  1. Evaluation of Laundering Durability of Electro-conductive Textile Dip-coated on Para Aramid Knit with Graphene/Waterborne Polyurethane Composite vol.19, pp.11, 2018, https://doi.org/10.1007/s12221-018-8591-3