참고문헌
- Alizadeh-Pasdar, N. and Li-Chan, E. C. (2000) Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. J. Agric. Food Chem. 48, 328-334. https://doi.org/10.1021/jf990393p
- Birnbaum, D., Kosmala, J., Henthorn, D., and Brannon-Peppas, L. (2000) Controlled release of beta-estradiol from PLGA microparticles: The effect of organic phase solvent on encapsulation and release. J. Controlled Release 65, 375-387. https://doi.org/10.1016/S0168-3659(99)00219-9
- Bruschi, M. L., Cardoso, M. L. C., Lucchesi, M. B., and Gremiao, M. P. D. (2003) Gelatin microparticles containing propolis obtained by spray-drying technique: Preparation and characterization. Int. J. Pharm. 264, 45-55. https://doi.org/10.1016/S0378-5173(03)00386-7
-
Bryant, C. M. and McClements, D. J. (2000) Influence of NaCl and
$CaCl_2$ on cold-set gelation of heat-denatured whey protein. J. Food Sci. 65, 801-804. https://doi.org/10.1111/j.1365-2621.2000.tb13590.x - Chen, L., Remondetto, G. E., and Subirade, M. (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 17, 272-283. https://doi.org/10.1016/j.tifs.2005.12.011
-
Chen, L. and Subirade, M. (2005) Chitosan/
${\beta}$ -lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials 26, 6041-6053. https://doi.org/10.1016/j.biomaterials.2005.03.011 - Davidovic, M., Mattea, C., Qvist, J., and Halle, B. (2009) Protein cold denaturation as seen from the solvent. J. Am.Chem. Soc. 131, 1025-1036. https://doi.org/10.1021/ja8056419
- Duchene, D. and Ponchel, G. (1997). Bioadhesion of solid oral dosage forms, why and how? Eur. J. Pharm. Biopharm. 44, 15-23. https://doi.org/10.1016/S0939-6411(97)00097-0
- Gracia-Julia, A., Rene, M., Cortes-Munoz, M., Picart, L., Lopez-Pedemonte, T., Chevalier, D., and Dumay, E. (2008) Effect of dynamic high pressure on whey protein aggregation: A comparison with the effect of continuous short-time thermal treatments. Food Hydrocolloid. 22, 1014-1032. https://doi.org/10.1016/j.foodhyd.2007.05.017
-
Ha, H. K., Kim, J. W., Lee, M. R., Jun, W., and Lee, W. J. (2015) Cellular uptake and cytotoxicity of
${\beta}$ -lactoglobulin nanoparticles: The effects of particle size and surface charge. Asian-Aust. J. Anim. Sci. 28, 420-427. https://doi.org/10.5713/ajas.14.0761 -
Ha, H. K., Kim, J. W., Lee, M. R., and Lee, W. J. (2013) Formation and characterization of quercetin-loaded chitosan oligosaccharide/
${\beta}$ -lactogloublin nanoparticle. Food Res. Int. 52, 82-90. https://doi.org/10.1016/j.foodres.2013.02.021 -
Haug, I. J., Skar, H. M., Vegarud, G. E., Langsrud, T., and Draget, K. I. (2009) Electrostatic effects on
${\beta}$ -lactoglobulin transitions during heat denaturation as studied by differential scanning calorimetry. Food Hydrocoll. 23, 2287-2293. https://doi.org/10.1016/j.foodhyd.2009.06.006 -
Hoffmann, M. A. M. and van Mil, P. J. J. M. (1997) Heat-induced aggregation of
${\beta}$ -lactoglobulin: Role of the free thiol group and disulfide bonds. J. Agric. Food Chem. 45, 2942-2948. https://doi.org/10.1021/jf960789q -
Hoffmann, M. A. M. and van Mil, P. J. J. M. (1999) Heat-induced aggregation of
${\beta}$ -lactoglobulin as a function of pH. J. Agric. Food. Chem. 47, 1898-1905. https://doi.org/10.1021/jf980886e -
Hongsprabhas, P. and Barbut, S. (1996)
$Ca^{2+}$ -induced gelation of whey protein isolate: Effects of pre-heating. Food Res. Int. 29, 135-139. https://doi.org/10.1016/0963-9969(96)00011-7 -
Iametti, S. Gregori, B. D. E., Vecchio, G., and Bonomi, F. (1996) Modifications occur at different structural levels during the heat denaturation of
${\beta}$ -lactoglobulin. Eur. J. Biochem. 237, 106-112. https://doi.org/10.1111/j.1432-1033.1996.0106n.x - Leclerc, P. L., Remondetto, G. E., Ramassamy, C., and Subirade, M. (2005) Whey protein nanospheres as drug carriers for oral administration. In Conference on bioencapsulation, Kingston, pp. 24-26.
-
Lee, M. R., Choi, H. N., Ha, H. K., and Lee, W. J. (2013) Production and characterization of
${\beta}$ -lactoglobulin/alginate nano-emulsion containing coenzyme$Q_{10}$ : Impact of heat treatment and alginate concentrate. Korean J. Food Sci. An. 33, 67-74. https://doi.org/10.5851/kosfa.2013.33.1.67 -
Li, H., Hardin, C. C., and Foegeding, E. A. (1994) NMR studies of thermal denaturation and cation-mediated aggregation of
${\beta}$ -lactoglobulin. J. Agric. Food Chem. 42, 2411-2420. https://doi.org/10.1021/jf00047a010 - Mauguet, M. C., legrand, J., Brujes, L., Carnelle, G., Larre, C., and Popineau, Y. (2002) Gliadin matrices for microencapsulation processes by simple coacervation method. J. Microencapsulation 19, 377-384. https://doi.org/10.1080/02652040110105346
- Monahan, F. J., German, J. B., and Kinsella, J. E. (1995) Effect of pH and temperature on protein unfolding and thiol/disulfide interchange reactions during heat-induced gelation of whey proteins. J. Agric. Food Chem. 43, 46-52. https://doi.org/10.1021/jf00049a010
- Muthu, M. S. and Wilson, B. (2012) Challenges posed by the scale-up of nanomedicines. Nanomed. 7, 307-309. https://doi.org/10.2217/nnm.12.3
- Némethy, G. and Scheraga, H. A. (1962) The structure of water and hydrophobic binding in proteins. III. The thermodynamic properties of hydrophobic bonds in proteins. J. Phys. Chem. 66, 1773-1789. https://doi.org/10.1021/j100816a004
- Parris, N., Purcell, J. M., and Ptashkin, S. M. (1991) Thermal denaturation of whey proteins in skim milk. J. Agric. Food Chem. 39, 2167-2170. https://doi.org/10.1021/jf00012a013
- Patel, A. R. and Velikov, K. P. (2011) Colloidal delivery systems in foods: A general comparison with oral drug delivery. LWT-Food Sci. Technol. 44, 1958-1964. https://doi.org/10.1016/j.lwt.2011.04.005
-
Prabakaran, S. and Damodaran, S. (1997) Thermal unfolding of
${\beta}$ -lactoglobulin: Characterization of initial unfolding events responsible for heat-induced aggregation. J. Agric. Food Chem. 45, 4303-4308. https://doi.org/10.1021/jf970269a -
Relkin, P. (1998) Reversibility of heat-induced conformational changes and surface exposed hydrophobic clusters of
${\beta}$ -lactoglobulin: Their role in heat-induced sol-gel state transition. Int. J. Biol. Macromol. 22, 59-66. https://doi.org/10.1016/S0141-8130(97)00089-5 -
Taulier, N. and Chalikian, T. V. (2001). Characterization of pH-induced transitions of
${\beta}$ -lactoglobulin: Ultrasonic, densimetric, and spectroscopic studies. J. Mol. Biol. 314, 873-889. https://doi.org/10.1006/jmbi.2001.5188 - Vetri, V. and Militello, V. (2005) Thermal induced conformational changes involved in the aggregation pathways of beta-lactoglobulin. Biophys. Chem. 113, 83-91. https://doi.org/10.1016/j.bpc.2004.07.042
- Win, K. Y. and Feng, S.-S. (2005) Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713-2722. https://doi.org/10.1016/j.biomaterials.2004.07.050
- Yang, J. T., Wu, C. C., and Martinez, H. M. (1986) Calculation of protein conformation from circular dichroism. Methods Enzymol. 130, 208-269.
- Zangi, R. (2011) Driving force for hydrophobic interaction at different length scales. J. Phys. Chem. B. 115, 2303-2311. https://doi.org/10.1021/jp1090284
- Zhang, J., Chen, X. G., Peng, W. B., and Liu, C. S. (2008) Up-take of oleoyl-chitosan nanoparticles by A549 cells. Nanomed. 4, 208-214. https://doi.org/10.1016/j.nano.2008.03.006
-
Zimet, P. and Livney, Y. D. (2009) Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for
$\omega$ -3 polyunsaturated fatty acids. Food Hydrocolloid. 23, 1120-1126. https://doi.org/10.1016/j.foodhyd.2008.10.008
피인용 문헌
- 식품 소재를 이용한 나노전달체의 제조 및 유식품 적용에 관한 고찰 vol.36, pp.4, 2017, https://doi.org/10.22424/jmsb.2018.36.4.187
- Manufacture and Physicochemical Properties of Chitosan Oligosaccharide/A2 β-Casein Nano-Delivery System Entrapped with Resveratrol vol.39, pp.5, 2017, https://doi.org/10.5851/kosfa.2019.e74
- Development and Characterization of Whey Protein-Based Nano-Delivery Systems: A Review vol.24, pp.18, 2017, https://doi.org/10.3390/molecules24183254