DOI QR코드

DOI QR Code

Optimal Design of Long-fiber Composite Cover Plate with Ribs

리브를 가진 장섬유 복합재료 커버 플레이트의 최적설계

  • Han, Min-Gu (Department of Mechanical Engineering, Chung-Ang University) ;
  • Bae, Ji-Hun (Department of Mechanical Engineering, Chung-Ang University) ;
  • Lee, Sung-Woo (School of Mechanical Engineering, Chung-Ang University) ;
  • Chang, Seung-Hwan (School of Mechanical Engineering, Chung-Ang University)
  • Received : 2016.12.13
  • Accepted : 2017.02.23
  • Published : 2017.02.28

Abstract

Carbon fiber reinforced composites have light weight and high mechanical properties. These materials are only applicable in limited shape structure cause by complex curing process and low drapability. To solve this problem, Long Fiber Prepreg Sheet (LFPS) has been proposed. In this research, electric device cover plate was selected and designed by using LFPS. Before the design process, we analyzed the target structure to which the rib structures were applied. And 8-inch tablet PC product was selected. For FE analysis, simple loading and boundary conditions were applied. Stiffness of rib structure was investigated according to the rib pattern and shape changes. Rib pattern and shape were selected based on fixed volume condition analysis results. And uneven rib width model was selected for the best case whose deflection was reduced 6~10% than uniform rib model.

일방향 탄소섬유 복합재료는 복잡한 성형 공정과 낮은 드레이핑능을 보여 비교적 단순한 형태의 구조물 제작에 제한적으로 사용되어 왔으나, 최근 이를 해결하고자 성형성과 생산효율이 우수한 장섬유 복합재료(Long Fiber Prepreg Sheet; LFPS)가 제안되었다. 본 연구에서는 단순한 성형 공정과 높은 성형 정밀도를 갖는 LFPS를 활용하여 전자 기기용 커버 플레이트 설계를 수행하였다. 설계에 앞서 리브 구조가 적용되는 대상 구조물을 8-inch 태블릿 PC 제품의 뒷 커버로 선정하였다. 해당 구조물에 평판에 적용되는 대표적인 하중 조건을 선정하여 유한요소해석에 적용하였고, 이를 활용하여 리브 구조물의 패턴과 리브 형상 변화에 따른 구조물의 구조 강성을 확인하였다. 해석 결과 제한된 부피 내에서 최적의 리브 패턴과 형상을 확보하였으며, 리브 폭이 균일하지 않은 경우가 균일한 경우에 비해 6~10% 처짐량이 감소함을 확인하였다.

Keywords

References

  1. Davoodi, M.M., Sapuan, S.M., and Yunus, R., "Conceptual Design of a Polymer Composite Automotive Bumper Energy Absorber," Materials & Design, Vol. 29, No. 7, 2008, pp. 1447-1452. https://doi.org/10.1016/j.matdes.2007.07.011
  2. Jeon, S.W., Han, M.G., Chang, S.H., Cho, Y.H., and Park, C.M., "Design of CFRP-Metal Hybrid Pantograph Upper-arm," Composites Research, Vol. 28, No. 5, 2015, pp. 321-326.
  3. Feraboli, P., Peitso, E., Deleo, F., Cleveland, T., and Stickler, P.B., "Characterization of Prepreg-based Discontinuous Carbon Fiber/epoxy Systems," Journal of Reinforced Plastics and Composites, Vol. 28, No. 10, 2008, pp. 1991-1214.
  4. Taketa, I., Okabe, T., Matsutani, H., and Kitano, A., "Flowability of Unidirectionally Arrayed Chopped Strands in Compression Molding," Composites Part B: Engineering, Vol. 42, No. 6, 2011, pp.1764-1769. https://doi.org/10.1016/j.compositesb.2011.01.021
  5. Wan, Y., and Takahashi, J., "Tensile and Compressive Properties of Chopped Carbon Fiber Tapes Reinforced Thermoplastics with Different Fiber Lengths and Molding Pressures," Composites Part A: Applied Science and Manufacturing, Vol. 87, No. 2016, pp.271-281. https://doi.org/10.1016/j.compositesa.2016.05.005
  6. Vasiliev, V.V., Barynin, V.A., and Razin, A.F., "Anisogrid Composite Lattice Structures - Development and Aerospace Applications," Composite Structures, Vol. 94, No. 3, 2012, pp.1117-1127. https://doi.org/10.1016/j.compstruct.2011.10.023
  7. Lam, Y.C., and Santhikumar, S., "Automated Rib Location and Optimization for Plate Structures," Structural and Multidisciplinary Optimization, Vol. 25, No. 1, 2003, pp.35-45. https://doi.org/10.1007/s00158-002-0270-7
  8. Chen, T., and Wang, C., "Topological and Sizing Optimization of Reinforced Ribs for a Machining Centre," Engineering Optimization, Vol. 40, No. 1, 2008, pp.33-45. https://doi.org/10.1080/03052150701578084
  9. Chung, J., and Lee, K., "Optimal Design of Rib Structures Using the Topology Optimization Technique," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 211, No. 6, 1997, pp.425-437. https://doi.org/10.1243/0954406971521836
  10. Krog, L., Tucker, A., and Rollema, G., "Application of Topology, Sizing and Shape Optimization Methods to Optimal Design of Aircraft Components," Proceeding of 3rd Altair UK HyperWorks Users Conferences, 2002.
  11. Mou, J., Lai, F., See, I., and Lin, W., "Analysis of Notebook Computer Chassis Design for Hard Disk Drive and Speaker Mounting," Proceedings of the International Conference on Computer Design (CDES), 2012, pp.1.
  12. Iwashita, M., "A Method of Identifying Improvement Factors for Tablet Services," Information Engineering Express, Vol. 2, No. 2, 2016, pp.27-36.
  13. Kim, K., Lim, J.H., Proctor, R.W., and Salvendy, G., "User Satisfaction with Tablet PC Features," Human Factors and Ergonomics in Manufacturing & Service Industries, Vol. 26, No. 2, 2016, pp.149-158. https://doi.org/10.1002/hfm.20619
  14. Miguel, A., Matos, P.M., and Claus, B., "Sizing Optimization for Industrial Applications," Proceeding of 11th World Congress on Structural and Multidisciplinary Optimization, Sydney, Australia, June, 2015, pp. 1-6.

Cited by

  1. 장섬유강화 복합재료 구조물의 기계적 접합을 위한 스테인레스 강 인서트 설계 vol.31, pp.4, 2018, https://doi.org/10.7234/composres.2018.31.4.139
  2. Optimization for the prepreg compression molding of notebook computer cover using design of experiment and finite element method vol.2, pp.9, 2017, https://doi.org/10.1007/s42452-020-03416-4
  3. 복합소재 사출인서트 알루미늄 바 카울크로스멤버 표면처리 특성에 따른 접합강도 분석 연구 vol.33, pp.6, 2017, https://doi.org/10.7234/composres.2020.33.6.360