DOI QR코드

DOI QR Code

Optimal Design of Thick Composite Wing Structure using Laminate Sequence Database

적층 시퀀스 데이터베이스를 이용한 복합재 날개 구조물의 최적화 설계

  • Jang, Jun Hwan (Helicopter Project Team, Defense Acquisition Program Administration) ;
  • Ahn, Sang Ho (Department of Automotive Engineering, Shinhan University)
  • Received : 2016.12.08
  • Accepted : 2017.02.28
  • Published : 2017.02.28

Abstract

This paper presents the optimum design methodology for composite wing structure which automatically calculates the safety margin using optimization framework integrating failure modes. Particularly, its framework is possible to optimize sizing procedure to prevent failure mode which has the greatest effect on reducing the sizing time of composite structure. The main failure mode was set as the first ply failure, buckling failure mode, and bolted joint stress field, and the margin was calculated to minimize the weight. The design variable is a laminate sequence database and the responses are strain, buckling, bolted joint stress field. The objective function is the mass of the wing structure. The results of buckling analysis were compared using the finite element model to verify the robustness and reliability of Composite Optimizer.

본 논문에서 제시한 복합재 날개 구조물의 최적설계 기법은 파손모드를 통합한 최적화 프레임 웍을 사용하여 복합재 날개 구조물의 안전율을 자동으로 계산한다. 개발된 최적화 프레임 웍은 복합재 구조물의 설계요소에 가장 큰 영향을 주는 파손모드 즉, 최초 파손모드, 좌굴 파손 모드 및 베어링-바이패스 파손을 확인하여 구축된 적층 데이터베이스 안에서 적층수를 찾아낸다. 이는 개발과정에서 수정 및 반복되는 설계 및 해석 시간을 단축시킬 수 있는 효과가 있다. 설계변수는 계단형태로 이루어진 적층 데이터베이스이며 응답은 변형률, 좌굴, 볼트 주변부의 응력장이며 목적함수는 날개구조의 질량이다. 그리고 최적화 프레임 윅을 구동하는 Composite Optimizer의 해석결과를 검증하기 위하여 유한요소모델의 좌굴해석 결과와 비교하여 유효성을 검증하였다.

Keywords

References

  1. Cho, W.J., Jung, J.R., Park, S.H., Lee, S.J., Kim, I.G., and Shul, C.W., "Investigation of the Weight Efficiency for Composite Sandwich Fuselage Structure Using the Optimization", Proceedings of the Korea Society for Aeronautical & Space Sciences, 2012, pp. 1625-1631.
  2. Yoon, J.H., Kim, M.J., Chang, B.W., Kim, H.K., Hwang, T.K., and Park, J.S., "Reliability-Based Design Optimization for considering Failure Mode of Bolted Joints in Cylindrical Composite Structure", The Korean Society for Aeronautical and Space Sciences, 2012.11, pp. 1664-1669.
  3. Kim, H.T., Kim, C., Yoon, I.S., and Kim, J.H., "Stacking-Sequence Optimization of Satellite Composite Struts Considering Launch and Orbital Environments", The Korean Society For Aeronautical And Space Sciences, 2002.
  4. Hwang, I.S., and Kang, W.K., "Optimal Design of Wing Skin Panel Structure for Regional Aircraft", The Korean Society for Aeronautical and Space Sciences, 2011.4, pp. 227-230.
  5. Park, K.J., Park, Y.J., Cho, J.Y., Park, C.Y., and Kim, S.J., "Design Optimization of a Wing Structure under Multi Load Spectra using PSO Algorithm", Journal of The Korean Society for Aeronautical and Space Sciences, 2012, Vol. 40, pp. 963-971. https://doi.org/10.5139/JKSAS.2012.40.11.963
  6. Bae, H.K., and Kon, J.H., "Airfoil Shape Design Using EGO Method", The Korean Society for Aeronautical and Space Sciences, 2011.4, pp. 754-761.
  7. Hellard, G., "Composites in Airbus", Airbus, 2008.
  8. Ogonowski, J.M., "Effect of Variances and Manufacturing Tolerances on the Design Strength and Life of Mechanically Fastened Composite Joints", McDonnell Aircraft Company, 1981.
  9. "Composite Structures Analysis Manual", Vought, 9.2.3-5
  10. Crews Jr., J.H., and Naik, R.A., "Bearing-Bypass Loading on Bolted Composite Joints", National Aeronautics and Space Administration, 1987.