DOI QR코드

DOI QR Code

Inside Wall Frame Detection Method Based on Single Image

단일이미지에 기반한 내벽구조 검출 방법

  • Received : 2016.08.31
  • Accepted : 2016.12.26
  • Published : 2017.02.28

Abstract

In this paper, we are proposing improved vanishing points detection and segments labeling methods for inside wall frame detection from indoor image of a piece of having a colour RGB. A lot of research related to recognizing the frame of artificial structures from the image is being performed due to increase in demand for AR technology. But detect the inside wall frame in indoor images have many objects that caused the occlusion is still a difficult issue. Inner wall frame detection methods are usually segment labeling methods and detect vanishing point methods are used together. In order to improve the vanishing point detection method we proposed using inner wall orthogonality which forms the cube. Also we proposed labeling method using tree based learning and superpixel based segmentation method for labelingthe segments in indoor images. Finally, in experiments have shown improved results about inside wall frame detection according to our methods.

본 논문에서는 한 장의 실내이미지에서 내벽구조 검출을 위한 개선된 소실점 검출방법과 세그먼트 레이블링 방법을 제안한다. AR 기술 수요의 증가로 이미지로부터 건축물의 구조를 인식하는 것과 관련된 연구가 많이 이루어 지고 있다. 그러나 폐색을 발생시키는 객체들이 많은 실내 이미지에서 실내 내부 구조를 인식하는 것은 여전히 어려운 문제이다. 소실점 검출 방법을 개선하기 위하여 육면체를 이루는 실내 내벽들 사이의 직교성을 이용하는 방법을 제안하였다. 또한 실내 이미지 내의 세그먼트들을 레이블링 하기 위하여 슈퍼픽셀 기반의 군집화 방법과 트리기반 학습기를 통한 레이블링 방법을 제안하였다. 마지막으로 실험 결과에서 제안한 방법들에 의하여 실내 구조 검출 결과가 개선됨을 보였다.

Keywords

References

  1. Chen, Y., Pan, D., Pan, Y., Liu, S., Gu, A., & Wang, M., "Indoor scene understanding via monocular RGB-D images." Information Sciences, 320, pp. 361-371 , Nov. 2015. https://doi.org/10.1016/j.ins.2015.03.023
  2. D. Hoiem, A. A. Efros, M. Hebert. "Recovering surface layout from an image." International Journal of Computer Vision, 75.1: 151-172, 2007. https://doi.org/10.1007/s11263-006-0031-y
  3. Hedau, Varsha, Derek Hoiem, David Forsyth. "Recovering the spatial layout of cluttered rooms." 2009 IEEE 12th international conference on computer vision. IEEE 2009, pp. 1849-1856, 2009.
  4. D. C. Lee, M. Hebert, T. Kanade. "Geometric reasoning for single image structure recovery." Computer Vision and Pattern Recognition, IEEE Conference on. IEEE, 2009. pp. 2136-2143, 2009.
  5. A. Gupta, M. Hebert, T. Kanade, D. M. Blei. "Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces." In NIPS, pp. 1288-1296, 2010.
  6. L. Del Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley, K. Barnard. "Bayesian geometric modeling of indoor scenes." In CVPR, 2012, pp. 2719-2726, 2012.
  7. Canny, John. "A computational approach to edge detection." IEEE Transactions on pattern analysis and machine intelligence, 6, pp. 679-698, 1986.
  8. Kosecka, Jana, Wei Zhang. "Video compass." European conference on computer vision. Springer Berlin Heidelberg, 2002.
  9. Felzenszwalb, Pedro F., and Daniel P. Huttenlocher. "Efficient graph-based image segmentation." International Journal of Computer Vision 59.2: 167-181, 2004. https://doi.org/10.1023/B:VISI.0000022288.19776.77
  10. Shi, Jianbo, and Jitendra Malik. "Normalized cuts and image segmentation." IEEE Transactions on pattern analysis and machine intelligence 22.8: 888-905, 2000. https://doi.org/10.1109/34.868688
  11. Achanta, Radhakrishna, et al. Slic superpixels. No. EPFL-REPORT-149300. 2010.
  12. Y. Zhao and S.-C. Zhu. "Scene parsing by integrating function, geometry and appearance models." In CVPR. IEEE, 2013, pp. 3119-3126, 2013.
  13. A. G. Schwing, R. Urtasun. "Efficient exact inference for 3d indoor scene understanding." In ECCV, pp. 299-313, 2012.