DOI QR코드

DOI QR Code

How Do Elementary School Students Understand Tables? : From Functional Thinking Perspective

초등학생들은 표를 어떻게 이해할까? : 함수적 사고의 관점에서

  • Received : 2017.01.03
  • Accepted : 2017.01.30
  • Published : 2017.01.31

Abstract

Although the table, as one of the representations for helping mathematics understanding, steadily has been shown in the mathematics textbooks, there have been little studies that focus on the table and analyze how the table may be used in understanding students' functional thinking. This study investigated the elementary school 5th graders' abilities to design function tables. The results showed that about 75% of the students were able to create tables for themselves, which shaped horizontal and included information only from the problem contexts. And the students had more difficulties in solving geometric growing pattern problems than story problems. Building on these results, this paper is expected to provide implications of instructional directions of how to use the table as 'function table'.

표는 수학적 이해를 돕는 표현의 하나로 수학과 교육과정에서 지속적으로 제시되지만, 표에 초점을 맞추어 학생들의 함수적 사고를 이해하는데 표가 어떻게 사용될 수 있는지 알아본 연구가 드물다. 본 연구는 함수적 사고의 관점에서 초등학교 5학년 학생들의 함수표 이해가 어느 정도인지를 표 만들기, 관계 서술하기, 관계식 표현하기로 나누어 분석하였다. 연구 결과 약 75%의 학생들이 평균적으로 표 만들기를 할 수 있었는데 이 때 제시된 정보만을 이용하여 가로형의 표를 창안하는 학생들의 비율이 가장 높았다. 또한 서술형에 비하여 기하패턴 문항을 해결하는데 학생들이 어려움을 드러냈다. 본 연구를 통하여 학생들이 '함수표'로서 표를 사용할 수 있는 지도 방향에 대한 시사점을 얻을 수 있을 것이라 기대한다.

Keywords

References

  1. 교육부 (2015a). 수학 4-2. 서울: 천재교육.(Ministry of Education (2015a). Elementary mathematics 4-2. Seoul: Chunjae Education.)
  2. 교육부 (2015b). 수학 6-2. 서울: 천재교육.(Ministry of Education (2015a). Elementary mathematics 6-2. Seoul: Chunjae Education.)
  3. 김정원 (2014). 초등학교 학생들의 함수적 사고의 특징 및 지도방향 탐색. 한국교원대학교 박사학위 논문.(Kim, J. W. (2014). An Investigation of the characteristics and instructional implications of functional thinking for elementary school students. Doctoral dissertation in Korea National University of Education.)
  4. 최지영, 방정숙(2012). 초등학교 2, 4, 6학년 학생들의 함수적 관계 이해 실태 조사. 학교수학, 14(3), 275-296.(Choi, J. Y. & Pang, J. S. (2012). An analysis of elementary school students' understanding of functional relationships. School Mathematics, 14(3). 275-296.)
  5. Barbara, M. Brizuela., & Susanna, Lara-Roth. (2002). Additive relations and function tables. Journal of Mathematical Behavior, 20(2002). 309-319.
  6. Bell, M., Bretzlauf, J., Dillard, A., Hartfield, R., Isaacs, A., MeBride, J., et al. (2007). Everyday mathematics 5-2 (3rd ed). Chicago: Wright Group.
  7. Billings(2008). Exploring generalization through pictorial growth patterns. In C. E. Greenes, & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics (pp. 279-293). Reston, VA: National Council of Teachers of Mathematics.
  8. Blanton, M. L. (2008). Algebra and the elementary classroom: Transforming thinking, transforming practice. Portsmouth, NH: Heinemann.
  9. Blanton, M. L., & Kaput, J. J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 36(5), 412-446.
  10. Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 5-23). Heidelberg: Springer.
  11. Blanton, M., Levi, L., Crites, T., & Dougherty, B. J. (2011). Developing essential understanding of algebraic thinking in grades 3-5. Reston, VA: National Council of Teachers of Mathematics.
  12. Carraher, D. W., Schliemann, A. D., & Schwartz, J. L. (2008). Early algebra is not the same as algebra early. In J. J. Kaput., D. W. Carraher., & M. L. Blanton (Eds.), Algebra in the early grades (pp.235-272). Mahwah, NJ: Routledge.
  13. Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. Kaput, D. W. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 5-17). New York: Lawrence Erlbaum.
  14. McEldoon, K. L., Cochrane-Braswell, C., & Rittle-Johnson, B. (2010). Effects of problem context on strategy use within functional thinking. Retrieved from world wide web: http://scholar.google.co.kr/scholar?cluster=7173491836342683087&hl=ko&as_sdt=0,5
  15. McEldoon, K. L., & Rittle-Johnson, B. (2010). Assessing elementary students' functional thinking skills: The cases of function tables. The 32nd Annual Conference of North American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH.
  16. National Council of Teachers of Mathematics(2000). Principles and standards for school mathematics. Reston, VA: Author. 류희찬 외 5인 공역 (2007). 학교수학을 위한 원리와 규준. 서울: 경문사.
  17. Ng, S. F. (2005). Mathematics in action 6B. Pearson Education South Asia Pte Ltd.
  18. Schliemann, A. D., Carraher, D. W., & Brizuela, B. (2001). When tables become function tables. In M. Heuvel-Panhuizen (Ed.), Proceedings of the Twenty-fifth International Conference for the Psychology of Mathematics Education (Vol. 4, pp. 145-152), Utrecht, The Netherlands.
  19. Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 133-160). New York: Lawrence Erlbaum.
  20. Tierney, C., Nemirovsky, R., & Noble, T. (2004). Investigations in number, data and space: patterns of change. Palo Alto, CA: Dale Seymour Publications.
  21. Warren, E. A., & Cooper, T. J. (2006). Using repeat ing patterns to explore functional thinking. Austr alian Primary Mathematics Classroom, 11(1), 9-14.

Cited by

  1. Domestic Research Trends of Mathematics Education: An Analysis of Journals Published from 1963 to 2019 vol.29, pp.4, 2017, https://doi.org/10.29275/jerm.2019.11.29.4.709