DOI QR코드

DOI QR Code

Genetic Relationship of the Ampelopsis brevipedunculata var. heterophylla and Vitis thunbergii var. sinuata with the Other Vitis Plants

개머루와 까마귀머루의 유전적 유연관계 분석

  • Bae, Young-Min (Department of Life Science and Public Health, Changwon University)
  • 배영민 (창원대학교 생명보건학부)
  • Received : 2016.10.21
  • Accepted : 2017.01.18
  • Published : 2017.01.30

Abstract

DNA sequences of the intergenic spacer 1 and intergenic spacer 2 of the nineteen plants belonging Vitis genus were collected from the Genbank. DNA sequences of the same regions of Vitis thunbergii var. sinuata and Ampelopsis brevipedunculata var. heterophylla, both common plants in Korea, were not available in Genbank. Those two plants were collected, their genomic DNA encoding 18S rRNA, intergenic spacer 1, 5.8S rRNA, intergenic spacer 2 and part of 28S rRNA amplified and DNA sequence determined. DNA sequences of twenty-one plants including two Korean plants were aligned by the Multiple sequence comparison by log-expectation(MUSCLE) algorithm and the alignment was used to calculate neighbor-joining tree and pairwise distance. The results indicate DNA sequences of the two Korean plants are highly homologous with each other, but they are quite distantly related to the other Vitis plants. Distant relationship of the two Korean plants with the other Vitis plants might be due to independent evolution of those two plants in geographically isolated environment. Those two Korean plants are classified in different genera based on the morphology, one in Vitis genus and the other in Ampelopsis genus, providing another example of discrepancy between morphological and genetic classification.

포도과(Vitaceae) 포도속(Vitis) 식물들 19종의 intergenic spacer 1 및 intergenic spacer 2의 염기서열을 Genbank에서 수집하였다. 그러나 국내에서 흔하게 발견되는 포도과 포도속 식물인 까마귀머루(Vitis thunbergii var. sinuata)와 포도과 개머루속 식물인 개머루(Ampelopsis brevipedunculata var. heterophylla)의 염기서열은 Genbank에서 발견할 수 없었다. 따라서 개머루와 까마귀머루를 채집하고 genomic DNA를 분리하여서 18S rDNA, ITS1, 5.8S rDNA, ITS2 및 28S rDNA의 일부를 증폭하고, 그 염기서열을 분석하였다. 이렇게 얻어진 염기서열을 다른 포도속 식물들의 염기서열과 MUSCLE (Multiple sequence comparison by log-expectation) algorithm으로 서로 비교하여 neighbor-joining tree 및 pairwise distance (p-distance)를 계산해 보았다. 그 결과 국내 자생종인 개머루와 까마귀 머루는 서로 간에는 높은 상동성을 보이지만 외국의 포도속 식물들과는 유전적 상관관계가 상당히 멀다는 것을 발견할 수 있었다. 이것은 아마도 우리나라 자생종들의 경우에 오랜 시간 동안 외국의 포도속 식물들과 지리적으로 격리된 상태에서 독립적으로 진화한 결과가 아닌가 생각된다. 또한 개머루와 까마귀머루의 염기서열의 상동성이 높은 데에도 불구하고, 형태를 기준으로 하는 기존의 분류체계에 따라서 개머루는 개머루속으로 까마귀머루는 포도속으로 분류가 되고 있다. 형태를 기준으로 하는 기존의 분류체계와 염기서열을 기준으로 하는 유전적 분류체계간의 괴리를 본 연구에서 다시 한 번 확인할 수 있었다.

Keywords

References

  1. Bae, Y. M. 2011. Phylogenetic analysis of the former members of Scrophulariaceae. J. Life Sci. 21, 273-278. https://doi.org/10.5352/JLS.2011.21.2.273
  2. Batovska, J., Blaket, M. J., Brown, K. and Lynch, S. E. 2016. Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Austrailia. Ecol. Evol. 6, 3001-3011. https://doi.org/10.1002/ece3.2095
  3. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. and Thompson, J. D. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497-3500. https://doi.org/10.1093/nar/gkg500
  4. Christenhusz, M. J. M. and Byng, J. W. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201-217 https://doi.org/10.11646/phytotaxa.261.3.1
  5. Choi, M. Y. and Rhim, T. J. 2010. Antimicrobial effect of Ampelopsis brevipedunculata extracts on food spoilage or foodborne disease microorganism. Kor. J. Plant Res. 23, 430-435.
  6. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797. https://doi.org/10.1093/nar/gkh340
  7. Fung, R. W., Gonzalo, M., Fekete, C., Kovacs, L. G., He, Y., Marsh, E., McIntyre, L. M., Schachtman, D. P. and Qiu, W. 2008. Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol. 146, 236-249.
  8. Huang, Y. L., Tsai, W. J., Shen, C. C. and Chen, C. C. 2005. Resveratrol derivatives from the roots of Vitis thunbergii. J. Nat. Prod. 68, 217-220. https://doi.org/10.1021/np049686p
  9. Jeandet, P., Douillet-Breuil, A. C., Bessis, R., Debord, S., Sbaghi, M. and Adrian, M. 2002. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 50, 2731-41. https://doi.org/10.1021/jf011429s
  10. Lee, T. B. 2006. Coloured flora of Korea, pp. 722-723, 2nd ed., Hyangmunsa, Seoul, Korea.
  11. Lim, K. C., Lim, P. E., Chong, V. C. and Loh, K. H. 2015. Molecular and morphological analyses reveal phylogenetic relationships of stingrays focusing on the family Dasyatidae (Myliobatiformes). PLoS One 10, e0120518. https://doi.org/10.1371/journal.pone.0120518
  12. Park, J. H., Kim, J. S., Jeong, A. Y. and Lee, J. D. 1996. Phytochemical study on the Vitis thunbergii var. sinuata. Kor. J. Plant Res. 9, 55-62.
  13. Park, Y. S., Kim, I. J. and Choi, J. Y. 2005. Research on Meoru: highly profitable crop, pp. 29-80. Rural Development Administration: Jeonju, Jeonrabukdo, Korea.
  14. Rhim, T. J. and Choi, M. Y. 2010. The antioxidative effects of Ampelopsis brevipedunculata extracts. Kor. J. Plant Res. 23, 445-450.
  15. Tamura, K., Nei, M. and Kumar, S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101, 11030-11035. https://doi.org/10.1073/pnas.0404206101
  16. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  17. Vd'acny, P. 2015. Estimation of divergence times in litostomatean ciliates (Ciliophora: Intramacronucleata), using Bayesian relaxed clock and 18S rRNA gene. Eur. J. Protistol. 51, 321-334. https://doi.org/10.1016/j.ejop.2015.06.008
  18. Wu, J., Zhang, Y., Zhang, H., Huang, H., Folta, K. M. and Lu, J. 2010. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol. 10, 234. https://doi.org/10.1186/1471-2229-10-234