DOI QR코드

DOI QR Code

Salmonella Typhimurium SL1344 Utilizing Human Transferrin-bound Iron as an Iron Source Regardless of Siderophore-mediated Uptake

Salmonella Typhimurium SL1344의 사람의 트렌스페린(hTf)에 부착된 철 이용에 관한 연구

  • Choe, Yunjeong (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Yoo, Ah Young (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Kim, Sam Woong (Swine Science and Technology Center, Gyeongnam National University of Science and Technology) ;
  • Hwang, Jihwan (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Kang, Ho Young (Department of Microbiology, College of Natural Sciences, Pusan National University)
  • 최윤정 (부산대학교 미생물학과) ;
  • 유아영 (부산대학교 미생물학과) ;
  • 김삼웅 (경남과학기술대학교 양돈과학기술센터) ;
  • 황지환 (부산대학교 미생물학과) ;
  • 강호영 (부산대학교 미생물학과)
  • Received : 2017.01.17
  • Accepted : 2017.01.20
  • Published : 2017.01.30

Abstract

Inorganic iron is essential for various metabolic processes, including RNA synthesis, electron transport, and oxygen detoxification in microorganisms. Many bacterial pathogens compete for iron acquisition in diverse environmental condition such as host. Salmonella Typhimurium SL1344 also requires inorganic iron as a cofactor for growth. When a M9 minimal liquid medium was supplemented with ethylenediamine di-o-hydroxyphenylactic acid (EDDA) which acts as an iron-chelating agent, growth of Salmonella Typhimurium SL1344 in the supplemented medium was completely arrested by deficient of useful iron under iron-depleted condition. However, a number of siderophores, which are small, high-affinity iron chelating compounds secreted by microorganisms such as bacteria and fungi, were produced for utilization of restricted iron under iron-depleted condition. A M9 minimal liquid medium complemented with human transferrin (hTf)-iron complex turned completely off production of siderophores, but growth of Salmonella Typhimurium SL1344 maintained level similar to compare one complemented with iron (III) chloride (FeCl3). This means that human transferrin (hTf)-bound iron can utilize via directly interaction with Salmonella Typhimurium SL1344 without productions of siderophores. Through construction and analysis of negative mutant for utilization of human transferrin (hTf)-bound iron, we confirm that the bacterium can directly use human transferrin (hTf)-bound iron without extracellularly intermediated carriers such as siderophores.

S. Typhimurium SL1344는 성장을 위한 보조인자로 무기철이 요구된다. 철 킬레이트제인 ethylenediamine di-o-hydroxyphenylactic acid (EDDA)가 첨가 된 M9 최소배지에서 S. Typhimurium은 성장에 있어 철 이용이 완전하게 억제된다. 하지만, 세균이나 곰팡이와 같은 미생물들은 철이 부족한 환경에서 제한된 철을 이용하기 위해 사이드로포어를 생산한다. 사람에서 유래한 트랜스페린(hTf)-철 복합체를 M9 배지에 첨가한 조건에서 S. Typhimurium의 사이드로포어 생산은 완전하게 중단되었다. 반면, S. Typhimurium의 성장은 염화철($FeCl_3$)을 첨가한 조건과 동일한 수준으로 유지되었다. 이 결과는 사이드로포어의 생산 없이도 S. Typhimurium이 hTf에 부착된 철을 직접적으로 이용할 수 있다는 것을 알 수 있다. 돌연변이주의 구축과 이를 이용한 분석을 통하여 우리는 세균이 hTf-철 복합체를 직접적으로 이용할 수 있다는 것을 확인할 수 있었다.

Keywords

References

  1. Armstrong, S. K. and Clements, M. O. 1993. Isolation and characterization of Bordetella bronchiseptica mutants deficient in siderophore activity. J. Bacteriol. 175, 1144-1152. https://doi.org/10.1128/jb.175.4.1144-1152.1993
  2. Bagg, A. and Neilands, J. B. 1987. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26, 5471-5477. https://doi.org/10.1021/bi00391a039
  3. Boulton, I. C., Yost, M. K., Anderson, J. E. and Cornelissen, C. N. 2000. Identification of discrete domains within gonococcal transferrin-binding protein A that are necessary for ligand binding and iron uptake functions. Infect. Immun. 68, 6988-6996. https://doi.org/10.1128/IAI.68.12.6988-6996.2000
  4. Briat, J. 1992. Iron assimilation storage in prokaryotes. Microbiology 138, 2475-2483.
  5. Bullen, J., Rogers, H. J. and Griffiths, E. 1978. Role of iron in bacterial infection, pp. 1-35, In Anonymous Current topics in microbiology and immunology, Springer.
  6. Cohen, M. S., Chai, Y., Britigan, B. E., McKenna, W., Adams, J., Svendsen, T., Bean, K., Hassett, D. J. and Sparling, P. F. 1987. Role of extracellular iron in the action of the quinone antibiotic streptonigrin: mechanisms of killing and resistance of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 31, 1507-1513. https://doi.org/10.1128/AAC.31.10.1507
  7. Cox, C. D. 1982. Effect of pyochelin on the virulence of Pseudomonas aeruginosa. Infect. Immun. 36, 17-23.
  8. Crosa, J. H. 1980. A plasmid associated with virulence in the marine fish pathogen Vibrio anguillarum specifies an iron-sequestering system.
  9. Curtiss, S. R. 3rd. 1965. Chromosomal Aberrations Associated with Mutations to Bacteriophage Resistance in Escherichia Coli. J. Bacteriol. 89, 28-40.
  10. Enard, C., Diolez, A. and Expert, D. 1988. Systemic virulence of Erwinia chrysanthemi 3937 requires a functional iron assimilation system. J. Bacteriol. 170, 2419-2426. https://doi.org/10.1128/jb.170.6.2419-2426.1988
  11. Hantke, K. 1984. Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol. Gen. Genet. 197, 337-341. https://doi.org/10.1007/BF00330982
  12. Heesemann, J., Hantke, K., Vocke, T., Saken, E., Rakin, A., Stojiljkovic, I. and Berner, R. 1993. Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron repressible outer membrane polypeptide of 65 000 Da and pesticin sensitivity. Mol. Microbiol. 8, 397-408. https://doi.org/10.1111/j.1365-2958.1993.tb01583.x
  13. Manoil, C. and Beckwith, J. 1985. TnphoA: a transposon probe for protein export signals. Proc. Natl. Acad. Sci. USA 82, 8129-8133. https://doi.org/10.1073/pnas.82.23.8129
  14. Meyer, J. M., Neely, A., Stintzi, A., Georges, C. and Holder, I. A. 1996. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 64, 518-523.
  15. Miller, J. H. 1992. A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria.
  16. Schwyn, B. and Neilands, J. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  17. Weinberg, E. D. 2009. Iron availability and infection. Biochimica et Biophysica Acta (BBA)-General Subjects. 1790, 600-605. https://doi.org/10.1016/j.bbagen.2008.07.002
  18. Weinberg E. D. 1978. Iron and infection. Microbiol. Rev. 42, 45-66.
  19. Williams, P. H. 1979. Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli. Infect. Immun. 26, 925-932.
  20. Yost-Daljev, M. K. and Cornelissen, C. N. 2004. Determination of surface-exposed, functional domains of gonococcal transferrin-binding protein A. Infect. Immun. 72, 1775-1785. https://doi.org/10.1128/IAI.72.3.1775-1785.2004