DOI QR코드

DOI QR Code

Purification of an Antibacterial Peptide from the Gills of the Pufferfish Takifugu pardalis

졸복의 아가미로부터 항균성 펩타이드의 정제

  • Kim, Tae Young (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University) ;
  • Go, Hye-Jin (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University) ;
  • Park, Nam Gyu (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University)
  • 김태영 (부경대학교 수산과학대학 생물공학과) ;
  • 고혜진 (부경대학교 수산과학대학 생물공학과) ;
  • 박남규 (부경대학교 수산과학대학 생물공학과)
  • Received : 2016.09.28
  • Accepted : 2016.11.25
  • Published : 2017.01.30

Abstract

An antibacterial peptide was purified from an acidified gill extract of the pufferfish Takifugu pardalis. The acidified gill extract was put through a Sep-Pak C18 solid phase extraction cartridge using a stepwise gradient and divided into a flow-through (F.T.) and 60% methanol fraction (RM 60). Among the eluents, RM 60 had potent antibacterial activity against Bacillus subtilis KCTC 1021. RM 60 was partially purified on a cationic-exchange column (SP-5PW) by a linear gradient, and the antibacterial peptide was then further purified, using a series of cationic-exchange and $C_{18}$ reversed-phase HPLC columns. For characterization of the purified peptide, its molecular weight and amino acid sequence were analyzed by MALDI-TOF MS and Edman degradation. The molecular weight of the peptide was about 1171.6 Da. The amino acid sequence of the peptide was partially determined as: STKEKAPRKQ. A comparison of the N-terminal amino acid sequence of the purified peptide with that of other known polypeptides revealed high homology with the N-terminus of the histone H3 protein, which belongs to the histone H3 family. Thus, this peptide was designated as a puffer fish gill (PFG)-related antimicrobial peptide. This is the report to describe an antimicrobial function for the N-terminus of histone H3 of an animal species. The findings suggest that this peptide plays a significant role in the innate defense system of the pufferfish.

졸복(Takifugu pardalis)의 아가미로부터 항균성 펩타이드를 정제하였다. 졸복 아가미의 산 추출물은 Sep-Pak C18에 의해 부분적으로 정제되었으며, 60% 메탄올 분획(RM60)은 Bacillus subtilis KCTC 1021에 대해 높은 항균활성을 나타내었다. 이 RM60을 사용하여 이온교환을 포함한 5단계의 연속적인 HPLC로 정제하였다. 정제된 펩타이드의 분자량과 아미노산 서열분석은 MALDI-TOF MS와 에드만 분해법으로 분석하였다. 이 펩타이드의 분자량은 약 1171.6 Da이었으며, 분석된 이 물질의 부분적인 일차구조서열은 다음과 같다; STKEKAPRKQ. 이 물질과 기존에 알려진 항균성 펩타이드들과 유사성을 조사한 결과, 정제된 물질은 histone H3 계열의 N-말단 부분과 유사하였다. 이러한 결과로부터 정제된 펩타이드는 졸복에서 반응하는 선천성 방어 시스템에서 중요한 역할을 하고 있다고 여겨진다.

Keywords

References

  1. Acosta, J., Montero, V., Carpio, Y., Velazquez, J., Garay, H. E., Reyes, O., Cabrales, A., Masforrol, Y., Morales, A. and Estrada, M. P. 2013. Cloning and functional characterization of three novel antimicrobial peptides from tilapia (Oreochromis niloticus). Aquaculture 372-375, 9-18. https://doi.org/10.1016/j.aquaculture.2012.07.032
  2. Bartlett, T. C., Cuthbertson, B. J., Shepard, E. F., Chapman, R. W., Gross, P. S. and Warr, G. W. 2002. Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Mar. Biotechnol. 4, 278-293. https://doi.org/10.1007/s10126-002-0020-2
  3. Birkemo, G. A., Luders, T., Andersen, O., Nes, I. F. and Nissen-Meyer, J. 2003. Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.), Biochim. Biophys. Acta. 1646, 207-215. https://doi.org/10.1016/S1570-9639(03)00018-9
  4. Boulanger, N., Munks, R. J. L., Hamilton, J. V., Vovelle, F., Brun, R., Lehane, M. J. and Bulet, P. 2002. Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J. Biol. Chem. 277, 49921-49926. https://doi.org/10.1074/jbc.M206296200
  5. Bulet, P., Stocklin, R. and Menin, L. 2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169-184. https://doi.org/10.1111/j.0105-2896.2004.0124.x
  6. Cole, A. M., Weis, P. and Diamond, G. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272, 12008-12013. https://doi.org/10.1074/jbc.272.18.12008
  7. Ellis, A. E. 2001. Innate host defense mechanisms of fish against viruses and bacteria. Dev. Comp. Immunol. 25, 827-839. https://doi.org/10.1016/S0145-305X(01)00038-6
  8. Fernandes, J. M. O., Molle, M. G., Kemp, G. D. and Smith, V. J. 2004. Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev. Comp. Immunol. 28, 127-138. https://doi.org/10.1016/S0145-305X(03)00120-4
  9. Ferraro, V., Cruz, I. B., Jorge, R. F., Malcata, F. X., Pintado, M. E. and Castro, P. M. L. 2010. Valorization of natural extracts from marine source focused on marine byproducts: a review. Food Res. Int. 43, 2221-2233. https://doi.org/10.1016/j.foodres.2010.07.034
  10. Fu, P., Wu, J. W. and Guo, G. 2009. Purification and molecular identification of an antifungal peptide from the hemolymph of Musca domestica (housefly). Cell. Mol. Immunol. 6, 245-251. https://doi.org/10.1038/cmi.2009.33
  11. Hancock, R. E. W. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis. 1, 156-164. https://doi.org/10.1016/S1473-3099(01)00092-5
  12. House, R. V. and Hastings, K. L. 2004. Opinion in immunotoxicology: multidimensional immunomodulation. J. Immunotoxicol. 1, 123-129. https://doi.org/10.1080/15476910490503646
  13. Hultmark, D., Steiner, H., Rasmuson, T. and Boman, H. G. 1980. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106, 7-16.
  14. Izadpanah, A. and Gallo, R. L. 2005. Antimicrobial peptides. J. Am. Acad. Dermatol. 52, 381-390. https://doi.org/10.1016/j.jaad.2004.08.026
  15. Jenssen, H., Hamill, P. and Hancock, R. E. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491-511. https://doi.org/10.1128/CMR.00056-05
  16. Kawasaki, H. and Iwamuro, S. 2008. Potential roles of histones in host defense as antimicrobial agents, Infect. Disord. Drug Targets 8, 195-205. https://doi.org/10.2174/1871526510808030195
  17. Kimbrell, D. A. and Beutler, B. 2001. The evolution and genetics of innate immunity. Nat. Rev. Genet. 2, 256-267. https://doi.org/10.1038/35066006
  18. Klomklao, S., Kishimura, H., Nonami, Y. and Benjakul, S. 2009. Biochemical properties of two isoforms of trypsin purified from the Intestine of skipjack tuna (Katsuwonus pelamis). Food Chem. 115, 155-162. https://doi.org/10.1016/j.foodchem.2008.11.087
  19. Luders, T., Birkemo, G. A., Nissen-Meyer, J., Andersen, O. and Nes, I. F. 2005. Proline conformation-dependent antimicrobial activity of a proline-rich histone h1 N-terminal Peptide fragment isolated from the skin mucus of Atlantic salmon, Antimicrob. Agents Chemother. 49, 2399-2406. https://doi.org/10.1128/AAC.49.6.2399-2406.2005
  20. Noga, E. J., Fan, Z. and Silphaduang, U. 2001. Histone-like proteins from fish are lethal to the parasitic dinoflagellate Amyloodinium ocellatum, Parasitology 123, 57-65.
  21. Oren, Z. and Shai, Y. 1996. A class of highly potent antibacterial peptides related from pardaxin, a pore-forming peptide from the Moses sole fish Pardachirus marmoratus. Eur. J. Biochem. 237, 304-310.
  22. Park, C. B., Lee, J. H., Park, I. Y., Kim, M. S. and Kim, S. C. 1997. A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS. Lett. 411, 173-178. https://doi.org/10.1016/S0014-5793(97)00684-4
  23. Park, I. Y., Park, C. B., Kim, M. S. and Kim, S. C. 1998. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus, FEBS. Lett. 437, 258-262. https://doi.org/10.1016/S0014-5793(98)01238-1
  24. Pasupuleti, M., Schmidtchen, A. and Malmsten, M. 2012. Antimicrobial peptides: key components of the innate immune system. Crit. Rev. Biotechnol. 32, 143-171. https://doi.org/10.3109/07388551.2011.594423
  25. Richards, R. C., O'Neil, D. B., Thibault, P. and Ewart, K. V. 2001. Histone H1: an antimicrobial protein of Atlantic salmon (Salmo salar), Biochem. Biophys. Res. Commun. 284, 549-555. https://doi.org/10.1006/bbrc.2001.5020
  26. Robinson, W. E. J., McDougall, B., Tran, D. and Selsted, M. E. 1998. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol. 63, 94-100. https://doi.org/10.1002/jlb.63.1.94
  27. Seo, J. K., Crawford, J. M., Stone, K. L. and Noga, E. J. 2005. Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica. Biochem. Biophys. Res. Commun. 338, 1998-2004. https://doi.org/10.1016/j.bbrc.2005.11.013
  28. Seo, J. K., Lee, M. J., Go, H. J., Park, T. H. and Park, N. G. 2012. Purification and characterization of YFGAP, a GAPDH- related novel antimicrobial peptide, from the skin of yellowfin tuna, Thunnus albacares. Fish Shellfish Immunol. 33, 743- 752. https://doi.org/10.1016/j.fsi.2012.06.023
  29. Seo, J. K., Stephenson, J., Crawford, J. M., Stone, K. L. and Noga, E. J. 2010. American oyster, Crassostrea virginica, expresses a potent antibacterial histone H2B protein. Mar. Biotechnol. (NY) 12, 543-551. https://doi.org/10.1007/s10126-009-9240-z
  30. Seo, J. K., Stephenson, J. and Noga, E. J. 2011. Multiple antibacterial histone H2B proteins are expressed in tissues of American oyster, Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 158, 223-229. https://doi.org/10.1016/j.cbpb.2010.11.011
  31. Shike, H., Lauth, X., Westerman, M. E., Ostland, V. E., Carlberg, J. M., Van Olst, J. C., Shimizu, C., Bulet, P. and Burns, J. C. 2002. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur. J. Biochem. 269, 2232-2237. https://doi.org/10.1046/j.1432-1033.2002.02881.x
  32. Silphaduang, U. and Noga, E. J. 2001. Peptide antibiotics in mast cells of fish. Nature 414, 268-269. https://doi.org/10.1038/35104690
  33. Stark, M., Liu, L. P. and Deber, C. M. 2002. Cationic Hydrophobic Peptides with Antimicrobial Activity. Antimicrob. Agents Chemother. 46, 3585-3590. https://doi.org/10.1128/AAC.46.11.3585-3590.2002
  34. Subramanian, S., Ross, N. W. and MacKinnon, S. L. 2009. Myxinidin, a novel antimicrobial peptide from the epidermal mucus of hagfish, Myxine glutinosa L. Mar. Biotechnol. 11, 748-757. https://doi.org/10.1007/s10126-009-9189-y
  35. Ullal, A. J., Litaker, R. W. and Noga, E. J. 2008. Antimicrobial peptides related from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). Dev. Comp. Immunol. 32, 1301-1312. https://doi.org/10.1016/j.dci.2008.04.005
  36. van't Hof, W., Veerman, E. C., Helmerhorst, E. J. and Amerongen, A. V. 2001. Antimicrobial peptides: properties and applicability. Biol. Chem. 382, 597-619.
  37. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389-396. https://doi.org/10.1038/415389a