Abstract
An anorthite-based traditional ceramic was developed by adding secondary flux materials to a mixture of kaolin and $CaCO_3$ in order to minimize the deformation during the sintering process. Three flux materials, feldspar, talc, and frit, were evaluated by comparison with two commercial chinaware bodies. Anorthite body with glass frit exhibited poor firing shrinkage. Poor mechanical properties (modulus of rupture, MOR < 30 MPa) was observed for the bodies with feldspar. Another anorthite body was formulated with wollastonite as a Ca source. The fired body showed a MOR of 81 MPa and a shrinkage rate of 6% when wollastonite was added up to 50%. In the XRD analysis, the phase ratio between anorthite and quartz was the highest in the specimen with 50% wollastonite addition. Homogeneous and relatively small closed pores were observed in the microstructural analysis. These results suggest that a ceramic body formulated with 50% kaolin and 50% wollastonite can be fired at $1200^{\circ}C$ with a 6% firing shrinkage rate, giving rise to minimal sintering deformation.