DOI QR코드

DOI QR Code

자유수면과 프로펠러의 상호작용에 관한 수치적 연구

Numerical study on the interaction between a free surface and a propeller

  • Park, Il-Ryong (Department of Naval Architecture and Ocean Engineering, Dong-Eui University) ;
  • Park, Dong-Woo (Department of Naval Architecture and Ocean Engineering, Tongmyung University) ;
  • Lee, Sang Bong (Department of Naval Architecture and Offshore Engineering, Dong-A University) ;
  • Paik, Kwang-Jun (Department of Naval Architecture and Ocean Engineering, Inha University)
  • 투고 : 2016.10.04
  • 심사 : 2017.01.06
  • 발행 : 2017.01.31

초록

프로펠러가 자유수면 근처에서 작동할 때, 프로펠러의 추력과 토오크는 감소하게 되고 자유수면에는 파도가 발생하게 된다. 본 연구에서는 다양한 프로펠러의 작동 조건에서 자유수면과 프로펠러의 상호작용에 대한 수치해석 결과를 살펴보았다. 회류수조에서 수행된 모형시험 결과와 비교를 통해 수치해석 기법을 검증한 후, 프로펠러의 침수깊이에 따른 프로펠러의 성능 및 자유수면의 영향에 대해 조사하였다. 그리고 프로펠러의 전진비에 따른 자유수면의 파형, 프로펠러 주위 유동, 추력 및 토오크의 변화 등을 확인하였다. 낮은 전진비에서 공기유입 현상은 관찰되지 않았지만, 자유수면의 파형은 프로펠러 팁 보오텍스와 밀접한 관계가 있음을 확인하였다. 또한 공기유입 현상이 발생하지 않는 조건에서는 높은 전진비에서 프로펠러 추력 및 토오크의 감소량이 증가함을 확인하였다.

The results of a numerical study on the performance of a propeller operating near a free surface are presented in this paper. The simulations are verified through comparison with experimental data, which was performed in a circulating water channel. The propeller performance as a function of the submerged depth was investigated. The effect of the propeller advance ratio on the wave patterns, flow structures around propeller, and thrust and torque of the propeller was also studied. Air ventilation was not observed for low advance coefficients. However, the simulations showed that wave pattern was strongly related to the tip vortex strength and inflow velocity. When air ventilation does not occur, the deduction of propeller thrust and torque increase for high advance coefficients.

키워드

참고문헌

  1. A. M. Kozlowska, S. Steen, and K. Koushan, "Classification of different type of propeller ventilation and ventilation inception mechanism," First International Symposium on Marine Propulors, smp'09, June, Trondheim, Norway, 2009.1
  2. A. M. Kozlowska, K. Wockner, S. Steen, T. Rung, K. Kousan, and S. J. B. Spence, "Numerical and experimental study of propeller ventialtion," Second International Symposium on Marine Propulors, smp'11, June, Hamburg, Germany, 2011.
  3. H. G. Park, T. G. Lee, K. J. Paik, and S. H. Choi, "Study on the characteristics of thrust and torque for partially submerged propeller," Journal of the Korean Society for Marine Environmental Engineering, vol. 14, no. 4, pp. 264-272, 2011. https://doi.org/10.7846/JKOSMEE.2011.14.4.264
  4. A. Califano and S. Steen, "Numerical simulations of a fully submerged propeller subject to ventilation," Ocean Engineering, vol. 38, no. 14-15, pp. 1582-1599, 2011. https://doi.org/10.1016/j.oceaneng.2011.07.010
  5. A. Califano and S. Steen, "Identification of ventilation regimes of a marine propeller by means of dynamic- loads analysis," Ocean Engineering, vol. 38, no. 14-15, pp. 1600-1610, 2011. https://doi.org/10.1016/j.oceaneng.2011.07.009
  6. L. Savio, S. Spence, K. Koushan, and S. Steen, "Full scale and model scale porpeller ventilation behind ship," Third International Symposium on Marine Propulors, smp'13, May, Tasmania, Australia, 2013.
  7. Y. Li, E. Martin, T. Michael, and M. Carrica, "A study of propeller operation near a free surface," Journal of Ship Research, vol. 59, no. 4, pp. 190-200, 2015. https://doi.org/10.5957/JOSR.59.4.150042
  8. B. G. Paik, J. Y. Lee, and S. J. Lee, "Effect of propeller immersion depth on the flow around a marine propeller," Journal of Ship Research, vol. 52, no. 2, pp. 102-113, 2008.
  9. I. R. Park, "Numerical analysis of flow around propeller rotating beneath free surface," Journal of Ocean Engineering and Technology, vol. 29, no. 6, pp. 427-435, 2015. https://doi.org/10.5574/KSOE.2015.29.6.427
  10. B. G. Paik, C. M. Lee, and S. J. Lee, "Comparative measurements on the flow structure of a marine propeller wake between an open free surface and closed surface flows," Journal of Marine Science and Technology, vol. 10, no. 3, pp. 123-130, 2005. https://doi.org/10.1007/s00773-004-0190-x
  11. J. Y. Lee, B. G. Paik, and S. J. Lee, "PIV measurements of hull wake behind a container ship model with varying loading condition," Ocean Engineering, vol. 36, no. 5, pp. 377-385, 2009. https://doi.org/10.1016/j.oceaneng.2009.01.006
  12. F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA Journal, vol. 32, no. 8, pp. 1598-1605, 1994. https://doi.org/10.2514/3.12149