DOI QR코드

DOI QR Code

Investigation on radiation shielding parameters of cerrobend alloys

  • Tellili, Borhan (Universite de Tunis El Manar, Faculte des Sciences de Tunis, Departement de physique, Unite de Recherche de Physique Nucleaire et des Hautes Energies, Campus Universitaire El-Manar) ;
  • Elmahroug, Youssef (Universite de Tunis El Manar, Faculte des Sciences de Tunis, Departement de physique, Unite de Recherche de Physique Nucleaire et des Hautes Energies, Campus Universitaire El-Manar) ;
  • Souga, Chedly (Universite de Carthage, Ecole Polytechnique de Tunisie)
  • Received : 2016.02.14
  • Accepted : 2017.08.08
  • Published : 2017.12.25

Abstract

In this study, to determine the most effective alloy for shielding against gamma-rays, the gamma-ray shielding parameters of six types of cerrobend alloys have been investigated. Gamma-ray interaction with the cerrobend alloys has been discussed mainly in terms of total mass attenuation coefficient (${\mu}_t$), half value layer (HVL), tenth value layer (TVL), effective atomic number ($Z_{eff}$), and effective electron density ($N_{eff}$). These parameters have been calculated by theoretical approach using the ParShield program in a photon energy range between 0.1 MeV and 100 GeV. The dependence of these parameters on the incident photon energy and chemical composition of the cerrobend alloys has been studied.

Keywords

References

  1. I. Akkurt, Effective atomic and electron numbers of some steels at different energies, Ann. Nucl. Energy 36 (2009) 1702-1705. https://doi.org/10.1016/j.anucene.2009.09.005
  2. I. Akkurt, A.M. El-Khayatt, Effective atomic number and electron density of marble concrete, J. Radioanal. Nucl. Chem. 295 (2013) 633-638. https://doi.org/10.1007/s10967-012-2111-5
  3. I.M. Borchardtt, J.R. Pattersont, A.H. Beddoef, G.C. Sorellf, An investigation of photonuclear reactions in Cerrobend eutectic material with an 18 MV linac, Phys. Med. Biol. 36 (1991) 649-653. https://doi.org/10.1088/0031-9155/36/5/008
  4. I.A. Brezovich, K.S. Sparks, J. Duan, A self-correcting method for improving the precision of beam blocks, J. Appl. Clin. Med. Phys. 2 (2001) 106-113. https://doi.org/10.1120/jacmp.v2i3.2603
  5. Y. Elmahroug, B. Tellili, C. Souga, Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials, Ann. Nucl. Energy 75 (2015a) 268-274. https://doi.org/10.1016/j.anucene.2014.08.015
  6. Y. Elmahroug, B. Tellili, C. Souga, K. Manai, ParShield: a computer program for calculating attenuation parameters of the gamma rays and the fast neutrons, Ann. Nucl. Energy 76 (2015b) 94-99. https://doi.org/10.1016/j.anucene.2014.09.044
  7. Y. Elmahroug, B. Tellili, C. Souga, Determination of shielding parameters for different types of resins, Ann. Nucl. Energy 63 (2013) 619-623.
  8. S. Gowda, S. Krishnaveni, T. Yashoda, T.K. Umesh, R. Gowda, Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds, Pramana J. Phys. 63 (2004) 529-541. https://doi.org/10.1007/BF02704481
  9. G.J. Hine, The effective atomic numbers of materials for various gamma interactions, Phys. Rev. 85 (1952) 725-737.
  10. J.H. Hubbell, Review of photon interaction cross section data in the medical and biological context, Phys. Med. Biol. 44 (1999) R1. https://doi.org/10.1088/0031-9155/44/1/001
  11. J.H. Hubbell, Photon mass attenuation and energy-absorption coefficients, Int. J. Appl. Radiat. Isot. 33 (1982) 1269-1290. https://doi.org/10.1016/0020-708X(82)90248-4
  12. O. Icelli, Z. Yalcina, M. Okutana, R. Boncukcuoglub, A. Sen, The determination of the total mass attenuation coefficients and the effective atomic numbers for concentrated colemanite and Emet colemanite clay, Ann. Nucl. Energy 38 (2011) 2079-2085. https://doi.org/10.1016/j.anucene.2011.06.003
  13. P. Limkitjaroenporn, J. Kaewkhao, S. Asavavisithchai, Determination of mass attenuation coefficients and effective atomic numbers for Inconel 738 alloy for different energies obtained from Compton scattering, Ann. Nucl. Energy 53 (2013) 64-68. https://doi.org/10.1016/j.anucene.2012.08.020
  14. L. Ma, W. Chang, M. Lau-Chin, E.M. Tate, A.L. Boyer, Using static MLC fields to replace partial transmission cerrobend blocks in treatment planning of rectal carcinoma cases, Med. Dosim. 23 (1998) 264-266. https://doi.org/10.1016/S0958-3947(98)00034-X
  15. S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instrum. Methods B 266 (2008) 3906-3912. https://doi.org/10.1016/j.nimb.2008.06.034
  16. Y. Mejaddem, I. Lax, A.K. Shamsuddin, Procedure for accurate fabrication of tissue compensators with high-density material, Phys. Med. Biol. 42 (1997) 415-421. https://doi.org/10.1088/0031-9155/42/2/013
  17. G. Neuner, M.M. Mohiuddin, W.N. Vander, O. Goloubeva, J. Ha, C.X. Yu, W.F. Regine, High-dose spatially fractionated GRID radiation therapy (SFGRT): a comparison of treatment outcomes with Cerrobend vs. MLC SFGRT, Int. J. Radiat. Oncol. Biol. Phys. 82 (2012) 1642-1649. https://doi.org/10.1016/j.ijrobp.2011.01.065
  18. J.B. Wojcick, R. Yankelevich, B.L. Werner, D.E. Lasher, Technical Note: on Cerrobend shielding for 18-22 MeV electron beams, Nonlinearity 35 (2008) 4625-4629.

Cited by

  1. Investigation of radiation shielding properties for some ceramics vol.107, pp.2, 2019, https://doi.org/10.1515/ract-2018-3030
  2. Experimental investigation of photon attenuation parameters for different binary alloys vol.107, pp.4, 2017, https://doi.org/10.1515/ract-2018-3079
  3. The use of isophthalic-bismuth polymer composites as radiation shielding barriers in nuclear medicine vol.6, pp.5, 2019, https://doi.org/10.1088/2053-1591/ab0578
  4. Gamma ray shielding capabilities of rhenium-based superalloys vol.174, pp.5, 2019, https://doi.org/10.1080/10420150.2019.1596110
  5. A comprehensive study on radiation shielding characteristics of Tin-Silver, Manganin-R, Hastelloy-B, Hastelloy-X and Dilver-P alloys vol.126, pp.4, 2017, https://doi.org/10.1007/s00339-020-3442-7
  6. Tungsten carbide and LMPA electron cutouts: comparison and validation using Monte Carlo modelling and measurement of dose vol.7, pp.1, 2017, https://doi.org/10.1088/2057-1976/abcb13
  7. Trivalent Ions and Their Impacts on Effective Conductivity at 300 K and Radio-Protective Behaviors of Bismo-Borate Glasses: A Comparative Investigation for Al, Y, Nd, Sm, Eu vol.14, pp.19, 2017, https://doi.org/10.3390/ma14195894
  8. Neutron/gamma radiation shielding characteristics and physical properties of (97.3−x)Pb−xCd-2.7Ag alloys for nuclear radiation applications vol.96, pp.12, 2017, https://doi.org/10.1088/1402-4896/ac3d4a
  9. Synthesis of different (RE)BaCuO ceramics, study their structural properties, and tracking their radiation protection efficiency using Monte Carlo simulation vol.276, pp.None, 2022, https://doi.org/10.1016/j.matchemphys.2021.125412
  10. Gamma radiation shielding performance of CuxAg(1-x)-alloys: Experimental, theoretical and simulation results vol.143, pp.None, 2017, https://doi.org/10.1016/j.pnucene.2021.104036