DOI QR코드

DOI QR Code

A new Tone's method in APOLLO3® and its application to fast and thermal reactor calculations

  • Mao, Li (DEN-Service d'etudes des reacteurs et de mathematiques appliquees (SERMA), CEA, Universite Paris-Saclay) ;
  • Zmijarevic, Igor (DEN-Service d'etudes des reacteurs et de mathematiques appliquees (SERMA), CEA, Universite Paris-Saclay)
  • Received : 2017.06.15
  • Accepted : 2017.08.03
  • Published : 2017.09.25

Abstract

This paper presents a newly developed resonance self-shielding method based on Tone's method in $APOLLO3^{(R)}$ for fast and thermal reactor calculations. The new method is based on simplified models, the narrow resonance approximation for the slowing down source and Tone's approximation for group collision probability matrix. It utilizes mathematical probability tables as quadrature formulas in calculating effective cross-sections. Numerical results for the ZPPR drawer calculations in 1,968 groups show that, in the case of the double-column fuel drawer, Tone's method gives equivalent precision to the subgroup method while markedly reducing the total number of collision probability matrix calculations and hence the central processing unit time. In the case of a single-column fuel drawer with the presence of a uranium metal material, Tone's method obtains less precise results than those of the subgroup method due to less precise heterogeneous-homogeneous equivalence. The same options are also applied to PWR UOX, MOX, and Gd cells using the SHEM 361-group library, with the objective of analyzing whether this energy mesh might be suitable for the application of this methodology to thermal systems. The numerical results show that comparable precision is reached with both Tone's and the subgroup methods, with the satisfactory representation of intrapellet spatial effects.

Keywords

References

  1. H. Golfier, et al., APOLLO3: a common project of CEA, AREVA and EDF for the development of a new deterministic multi-purpose code for core physics analysis, in: Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York, May 3-7, 2009.
  2. D. Schneider, et al., $APOLLO3^{(R)}$: CEA/DEN deterministic multi-purpose code for reactor physics analysis, in: Proc. PHYSOR 2016, Sun Valley, ID, May 1-5, 2016.
  3. G. Rimpault, Algorithmic features of the ECCO cell code for treating heterogeneous fast reactor assemblies, in: Proc. Int. Conf. Mathematics and Computations, Reactor Physics and Environmental Analyses, Portland, Oregon, April 30eMay 4, 1995.
  4. L. Mao, I. Zmijarevic, R. Sanchez, Resonance self-shielding methods for fast reactor calculationsd comparison of a new Tone's method with the subgroup method in $APOLLO3^{(R)}$, Nucl. Sci. Eng. 188 (2017) 15-32. https://doi.org/10.1080/00295639.2017.1332890
  5. P. Ribon, J.-M. Maillard, Les tables de probabilites. Application au traitement des sections efficaces pour la neutronique, Tech. Rep. CEA-N-2485, Commissariat a l'Energie Atomique, 1986.
  6. M. Coste-Delclaux, A nuclear data processing system for transport depletion and shielding codes, in: Proc. Int. Conf. on the Physics of Reactors "Nuclear Power: A Sustainable Resource" (PHYSOR 2008), Interlaken, Switzerland, September 14-19, 2008.
  7. C.M. Diop, et al., Review of the TRIPOLI-4 Monte Carlo transport code, in: Proc. of the Int. Cong. on Advances in Nuclear Power Plants (ICAPP 2007), Nice Acropolis, France, May 13-18, 2007.
  8. T. Tone, A numerical study of heterogeneity effects in fast reactor critical assemblies, J. Nucl. Sci. Technol. 12 (1975) 467. https://doi.org/10.1080/18811248.1975.9733139
  9. M. Ishikawa, Consistency evaluation of JUPITER experiment and analysis for large FBR cores, in: Proc. Int. Conf. on the Physics of Reactors (PHYSOR 96), Mito, Ibaraki, Japan, September 16-20, 1996.
  10. H. Yu, T. Endo, A. Yamamodo, Resonance calculation for large and complicated geometry using Tone's method by incorporating the method of characteristics, J. Nucl. Sci. Technol. 48 (2011) 330. https://doi.org/10.1080/18811248.2011.9711707
  11. C. Lee, W. Yang, An improved resonance self-shielding method for heterogeneous fast reactor assembly and core calculations, in: Proc. M&C 2013, Sun Valley, Idaho, May 5-9, 2013.
  12. A. Weinberg, E. Wigner, The Physical Theory of Neutron Chain Reactors, University of Chicago Press, Chicago, 1958.
  13. I. Carlvik, The Dancoff correction in square and hexagonal lattices, Nucl. Sci. Eng. 29 (1967) 325. https://doi.org/10.13182/NSE67-A17280
  14. G. Chiba, A combined method to evaluate the resonance self-shielding effect in power fast reactor fuel calculation, J. Nucl. Sci. Technol. 40 (2003) 537. https://doi.org/10.1080/18811248.2003.9715389
  15. M. Ishikawa, T. Ikegami, T. Sanda, ZPPR benchmarks for large LMFBR core physics from JUPITER cooperative program between United States and Japan, Nucl. Sci. Eng. 178 (2014) 335-349. https://doi.org/10.13182/NSE14-9
  16. C. Stocker, Z. Weiss, Spatially dependent resonance cross sections in a fuel rod, Ann. Nucl. Energy 23 (1996) 765. https://doi.org/10.1016/0306-4549(95)00074-7
  17. A. Hebert, A. Santamarina, Refinement of the Santamarina-Hfaiedh energy mesh between 22.5 eV and 11.4 keV, in: Proc. Int. Conf. on the Physics of Reactors "Nuclear Power: A Sustainable Resource" (PHYSOR 2008), Interlaken, Switzerland, September 14-19, 2008.
  18. P. Reuss, Neutron Physics, EDP Sciences, 2008.
  19. R. Stamm'ler, M. Abbate, Methods of Steady-State Reactor Physics in Nuclear Design, Academic Press, London, 1983.
  20. G. Bell, S. Glasstone, Nuclear Reactor Theory, Van Nostrand Reinhold Company, New York, 1970.
  21. I. Zmijarevic, Multidimensional discrete ordinates nodal and characteristics methods for APOLLO2 code, in: Proc. Int. Conf. on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications (M&C 1999), Madrid, Spain, September 27-30, 1999.
  22. E. Masiello, R. Sanchez, I. Zmijarevic, New numerical solution with the method of short characteristics for 2-D heterogeneous cartesian cells in the APOLLO2 code: numerical analysis and tests, Nucl. Sci. Eng. 161 (2009) 257. https://doi.org/10.13182/NSE161-257
  23. C. Mounier, B. Normand, Fission source calculations and its influence in criticality applications, in: PHYSOR 2008, Interlaken, Switzerland, September 14-19, 2008.
  24. P. Mosca, Notice d'identification de la bibliotheque CEA V5.1 PATCH a 1968 groupes d'APOLLO3, Tech. Rep. DEN/DANS/DM2S/SERMA/LLPR/NT/13-5608/A, CEA, 2013.
  25. P. Mosca, C. Mounier, P. Bellier, I. Zmijarevic, Improvements in transport calculations by the energy-dependent fission spectra and subgroup method for mutual self-shielding, Nucl. Sci. Eng. 175 (2013) 266-282. https://doi.org/10.13182/NSE12-63
  26. S. Mengelle, Notice d'identification de la bibliotheque CEA V6 d'APOLLO2, Tech. Rep. DEN/DANS/DM2S/SERMA/LLPR/NT/14-5717/A, CEA, 2014.
  27. NEA Data Bank [Internet]. Available from: http://www.nea.fr/html/dbdata/.
  28. A. Zoia, E. Brun, C. Jouanne, F. Malvagi, Doppler broadening of neutron elastic scattering kernel in $TRIPOLI-4^{(R)}$, Ann. Nucl. Energy 54 (2013) 218-226. https://doi.org/10.1016/j.anucene.2012.11.023
  29. R. Sanchez, et al., APOLLO2 II: a user-oriented, portable, modular code for multigroup transport assembly calculations, Nucl. Sci. Eng. 100 (1988) 352. https://doi.org/10.13182/NSE88-3
  30. R. Sanchez, et al., APOLLO2 years 2010, Nucl. Eng. Technol. 42 (2010) 474. https://doi.org/10.5516/NET.2010.42.5.474
  31. R. Sanchez, Approximate solutions of the two-dimensional integral transport equation by collision probability methods, in: Technical Committee Meeting on Methods of Neutron Transport Theory in Reactor Calculations, Bologne, Italy, November 3-5, 1975.
  32. R. Sanchez, L. Mao, S. Santandrea, Treatment of boundary conditions in trajectory based deterministic transport methods, Nucl. Sci. Eng. 140 (2002) 23. https://doi.org/10.13182/NSE140-23
  33. G. Rimpault, et al., The ERANOS data and code system for fast reactor neutronic analyses, in: PHYSOR 2002, Seoul, South Korea, October 7-10, 2002.
  34. M. Coste-Delclaux, S. Mengelle, New resonant mixture self-shielding treatment in the code APOLLO2, in: PHYSOR 2004, Chicago, Illinois, April 25-29, 2004.
  35. M. Coste-Delclaux, A. Aggery, N. Huot, New developments in resonant mixture self-shielding treatment with APOLLO2 code and application to Jules Horowitz reactor core calculation, in: M&C 2005, Avignon, France, September 12-15, 2005.
  36. L. Mao, R. Sanchez, I. Zmijarevic, Considering the up-scattering in resonance interference treatment in $APOLLO3^{(R)}$, in: M&C 2015, Nashville, Tennessee, USA, April 19-23, 2015.

Cited by

  1. A 2D/1D Algorithm for Effective Cross-Section Generation in Fast Reactor Neutronic Transport Calculations vol.192, pp.1, 2018, https://doi.org/10.1080/00295639.2018.1480190