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A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed
this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte
Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-
point iteration is known to be numerically unstable for some problems, resulting in large spatial oscil-
lations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number
of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is
ensured, development of any possible numerical instability is prevented by not allowing the fission
source to converge fully within a single iteration step, which is achieved by setting a small number of
criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge
even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test
simulations.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Monte Carlo approach has the potential to deliver solutions
for complex multiphysics problems in reactor physics, including
problems that involve neutronics coupled to thermal hydraulics or
other types of feedback. A variety of programs that couple Monte
Carlo criticality solvers externally to feedback solvers is available
[1,2]. Some Monte Carlo codes have integrated the feedback solvers
with the criticality code [3—6]. Recent studies extend the applica-
tion of coupled Monte Carlo codes to simulate transient scenarios
[7]. Despite this progress, many problems still remain unresolved.

One major concern when performing coupled Monte Carlo
simulations is numerical stability. Numerical instabilities may arise
due to the nonlinearities inherent to coupled neutronics problems.
For popular Monte Carlo burnup simulations, several stable
coupling schemes have been suggested recently [8,9], and some
have also been extended to Monte Carlo burnup calculations with
thermal—hydraulic feedback [10]. Nevertheless, more research is
needed to ensure numerical stability for other kinds of coupled
Monte Carlo simulations.

In this note, we address Monte Carlo solutions to steady-state
systems with feedback; these are solutions to nonlinear
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problems. The solution is commonly obtained iteratively; Monte
Carlo solvers provide the neutron flux or power distribution to
feedback solvers, while the feedback solvers may provide ther-
mal—hydraulic conditions or other data to Monte Carlo solvers.

Fixed-point iteration [ 11—14] is a basic numerical way of solving
nonlinear problems. The Monte Carlo solver and feedback solvers
are executed in a simple iterative manner. At each iteration step, the
Monte Carlo solver takes the feedback solver output from the
previous step, and the feedback solver uses the latest output from
the Monte Carlo solver. The solution is expected to improve with
each new step. In the following, the terms “iteration step” and
“iteration” relate exclusively to the successive execution of various
solvers, while the terms “criticality cycle” and “cycle” relate to the
simulation of one neutron generation within a single Monte Carlo
criticality simulation.

The nonlinear nature of coupled simulations can introduce nu-
merical instabilities in the simulations, depending on the way the
solution is obtained. Dufek and Gudowski [15] argue that numerical
instabilities, in the form of large spatial oscillations of the power
distribution, may develop in coupled simulations when the neutron
flux or power distribution is iterated by the fixed-point method;
they suggest obtaining the solution via the stochastic approxima-
tion, which combines solutions of all iteration steps. A simplified
formulation of this solution is offered by Dufek and Hoogenboom
[16]. The efficiency of the stochastic approximation, however,
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depends on a number of free parameters that may not be simple to
estimate.

Here we show that fixed-point iteration can, in fact, be stable
and efficient under specific (yet easily realized) conditions. It is
apparent that Dufek and Gudowski [15] assume that the Monte
Carlo solution converges at each iteration step, which requires
simulating a large number of criticality cycles at each iteration step.
When doing so, the simulation may become numerically unstable.
Nevertheless, we show that the simulation can be stabilized by
reducing the number of criticality cycles simulated at each iteration
step. In order to allow the fission source to converge in the long run,
we reuse the fission source over the successive iteration steps; i.e.,
the initial fission source needed by the Monte Carlo solver is taken
from the last cycle of the previous iteration step.

We argue that the fixed-point iteration can be stabilized due to
certain properties of the fission source. With each criticality cycle,
the fission source changes only a little. Therefore, when a relatively
small number of criticality cycles is simulated by the Monte Carlo
solver at each iteration step, the fission source changes its shape
slowly over the successive iteration steps, acting as a stabilization
element. As the computed power (or neutron flux) distribution is
linked directly to the fission source, the whole simulation can be
stabilized this way.

The possibilities of stabilizing the fixed-point iteration are
insufficiently explored in the literature. In this work, we identify
the fission source as an effective but as yet unused tool for stabi-
lizing the fixed-point iteration. The importance of this scientific
contribution lies in its simplicity and the popularity of fixed-point
iteration.

2. Materials and Methods
2.1. Solvers

Numerical test simulations are performed with a proprietary
nonanalog continuous-energy three-dimensional Monte Carlo code
that uses the JEFF-3.1 point-wise neutron cross-section library. The
code can run test simulations that are either coupled or noncoupled
(i.e., Monte Carlo criticality simulations without feedback).

Our coupled test simulations incorporate feedback from the
abundant fission product >>Xe, which has a relatively strong effect
on the thermal neutron flux [17,18]. Our xenon feedback solver
computes the asymptotic >*Xe concentration distribution that is
established in a nuclear reactor after a sufficiently long time under
fixed conditions. The solver accounts for the direct and indirect
production of 3°Xe from 23°U, and for the possibility of neutron
capture in ’I; however, assuming monoenergetic, thermal con-
ditions, energy dependences are neglected. The feedback solver is
used only to change the concentration of >*Xe in various fuel re-
gions of the system modeled by the Monte Carlo criticality solver.

2.2. Numerical test model

The numerical test model comprises a single fuel rod radially
centered in a square cell. The fuel is UO3; the fuel rod is surrounded
by cladding and coolant. Table 1 gives the parameters of the system
(derived from common specifications of pressurized water
reactors).

In order to specify the 13°Xe concentration according to the local
neutron flux, a spatial mesh is superimposed over the system. The
mesh divides the test model axially into 30 equidistant nodes. The
neutron flux and xenon concentration distribution are discretized
over the mesh; the neutron flux is furthermore normalized with
respect to an average linear power of 158.8 W/cm.

Table 1
Fuel pin geometry and material parameters.
Fuel pin length 300 cm
Fuel pellet diameter 0.82 cm
Rod outer diameter 0.95 cm
Pitch 1.26 cm
Fuel U02
Density 10 g/cm?®
Enrichment in 23°U 3.10 wt%
Cladding 07y
Density 6.5 g/cm®
Coolant H,0
Density 0.70 g/cm?

We choose to apply reflective boundary conditions on all faces
of the system. Under these conditions, the nonlinear solution and
the steady-state fission source distribution are axially flat. The fact
that we know the solution makes it possible for us to evaluate the
error in the computed results without need for a reference
simulation.

If void boundary conditions are applied to the axial faces, then
the reference steady-state solution will be unknown and cannot be
obtained easily. A solution given by a special reference simulation
can always be questioned as being affected by possible numerical
instability, insufficient statistics, poor source convergence, or the
presence of source bias [19—21]. These problems can be overcome
here by choosing a system with a known steady-state solution.

The initial fission source at the first iteration step is centered at
the first mesh node (a point 5 cm from the boundary) in all tests.
The asymptotic >>Xe concentration distribution is set accordingly;
i.e., at the first iteration step, 13°Xe is present only in the first node.
This poor initial guess and asymmetrical arrangement are chosen
on purpose to trigger possible numerical instabilities.

The simple numerical model is chosen here purposely for its
ability to demonstrate deficiencies in numerical methods. If a nu-
merical method fails in a simulation of a very complex model, the
failure can be attributed to the model complexity; the method
could still be expected to perform well in simulations of other
systems. Nevertheless, when the method fails in a simulation of a
simple system, the method should not be expected to perform well
in simulations of other, more complex systems. Test simulations of
simple models are, therefore, relevant to studies of numerical
method deficiencies, such as the possible numerical instability in
coupled simulations, as in this study.

2.3. Test cases

We compare five cases of coupled simulations that differ in the
number of Monte Carlo criticality cycles simulated at each iteration
step (Table 2). In addition, we study one noncoupled test case in
which the xenon feedback is neglected. In all other respects, set-
tings for the coupled and noncoupled test cases are the same.

Each criticality cycle simulates 50,000 neutron histories; all
criticality cycles are active. The total number of iteration steps in
each test case differs depending on the chosen number of cycles per
step (Table 2); however, the total number of simulated neutron
histories is conserved at 2 x 10°.

Table 2
Description of coupled test cases.

Case no. No. of cycles per step No. of iteration steps
1 4,000 10

2 1,000 40

3 100 400

4 10 4,000

5 1 40,000
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2.4. Test methodology

We choose to analyze the stability of the coupled simulations by
studying the spatial distribution of the fission source. When a nu-
merical instability develops in the simulation, the fission source
undergoes spatial oscillations over the successive iteration steps.
These oscillations can be measured easily.

For the purpose of measuring the error in the fission source, the
fission source is discretized over the same mesh as the neutron flux.
Since the ideal fission source distribution is axially flat in the test
model geometry, the relative error in the fission source can be
evaluated as follows:

=T M

where f is the discretized fission source, f* is the ideal discretized
fission source (a vector with equal elements), and the tilde operator
~ normalizes any vector to its first norm. The factor of 2 in Eq. (1)
scales the maximum possible relative error to unity.

If a simulation is repeated with a different seed in the Monte
Carlo random number generator, slightly different results will be
measured. To deal with these variations in results, we repeat each
test case 504 times and average the relative error ¢ over all repe-
titions into the mean  value.

3. Results

To compare test cases with varied numbers of criticality cycles
per iteration step, Fig. 1 depicts the mean relative error in the
fission source with respect to the total number of simulated
neutron histories (i.e., histories combined over iteration steps and
all criticality cycles within each step).

The relative error in the initial fission source (placed close to a
boundary) is nearly unity in all test cases. As the total number of
simulated neutron histories grows, the fission source converges
and the error decreases until only the statistical error or an error
caused by the numerical instability remains in the fission source.

The error in the fission source cannot decrease below the error
caused by the statistical noise that is always present in the fission
source, irrespective of the number of simulated cycles or step. The
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Fig. 1. Mean error in the fission source over the total number of neutron histories
simulated by the Monte Carlo solver.

statistical noise in the fission source is of the order O(1//m ), where
m is the number of neutrons simulated per cycle; therefore, the
error in the fission source cannot decay below the limit of the order
o(1/vm).

The test case with no feedback (the noncoupled case) takes a
total of about 4 x 107 neutron histories to achieve fission source
convergence (Fig. 1). The relative error in the converged fission
source caused by random noise amounts to about 0.022.

Large spatial oscillations in the fission source can be observed in
the coupled test cases with 4,000 and 1,000 cycles per iteration step
(Fig. 2). Owing to these oscillations, the mean relative error remains
larger than in all other test cases (Fig. 1). When the number of cycles
per iteration step is this large, the fission source can fully converge
at each iteration step; however, it converges to conditions that are
far from steady state.

Interestingly, the fission source in the coupled test simulations
with one or 10 cycles per step converges not only in a stable
manner with no sign of spatial oscillations (Fig. 3), but also
considerably faster than the fission source in the noncoupled
simulations (Fig. 1). Convergence of the fission source in these
coupled test cases bears strong resemblance to that in the non-
coupled test case.

While the fission source in the coupled test case with 100 cycles
per step converges, its mean error decays in a zigzag pattern during
the first several iteration steps (Fig. 1). This suggests that slight
spatial oscillations appear in the fission source during the several
first steps. Nevertheless, after reaching the converged state, the
error in the fission source remains similar to (perhaps even
marginally lower than) that in the noncoupled test simulations.

4. Discussion

The presence of strong feedback in the system (i.e., the strong
nonlinearity of the problem) is the reason for the possible numer-
ical instabilities of the fixed-point iteration that manifest them-
selves in the form of strong spatial oscillations of the neutron flux,
fission source, and system conditions (e.g., the xenon concentra-
tion). We show here that these oscillations can be eliminated when
the Monte Carlo fission source is not allowed to converge
completely within each iteration step. This can be done simply by

1.15
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Fig. 2. Fission source distribution at selected iteration steps of a single coupled
simulation (with 4,000 criticality cycles per iteration step). To reduce the statistical
noise in the depicted fission source, the data are combined over the criticality cycles
within the respective iteration steps.
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Fig. 3. Fission source distribution depicted at specific points in the simulation when h
neutron histories were simulated in total. (A) Single noncoupled test simulation. (B)
Single coupled test simulation with 10 cycles per step.

simulating a relatively small number of Monte Carlo criticality cy-
cles within each iteration step.

The small number of criticality cycles per iteration step ensures
that the fission source (and the computed neutron flux) does not
change significantly within a single iteration step. This way the
fission source is not allowed to converge fully to reflect the actual
system conditions within each iteration step. This effectively
removes the possibility of developing strong spatial oscillations of
the neutron flux over successive iteration steps. Global convergence
is, however, still reached after a certain number of steps. Our
findings are confirmed in a recent study by Gill et al. [22].

When the spatial oscillations of the fission source are prevented
by the reduction of the number of cycles per step, the actual
convergence rate of the fission source may be even better than that
in criticality simulations of the same system with no feedback. This
is because deviations from the steady-state fission source are
quickly counteracted through the negative feedback when the
number of cycles per step is small.

We wish to highlight that in this note we have addressed only
the numerical stability of the fixed-point iteration scheme; we have
not addressed the efficiency of the coupled simulations. Indeed,
Monte Carlo coupling schemes that perform a small number of

criticality cycles at each iteration step can be efficient only when
the cost of the feedback solver is reasonably small relative to the
cost of each iteration step. Similarly, the computing efficiency de-
pends on the way the feedback is implemented in the coupled
simulation, and on whether or not the Monte Carlo solver reloads
the neutron cross-section libraries at each iteration step.

The condition of a low-cost penalty can be met for analytic and
internally coupled feedback solvers such as the xenon feedback
solver used in this study. In fact, both MC21 code [4] and SERPENT
[5] have a xenon feedback solver, implemented via fixed-point
iteration. This note represents a foundation for justifying the nu-
merical stability of simulations coupled via fixed-point iteration
under the condition of a reasonably small number of criticality
cycles per iteration step.

Our conclusions are based on numerical simulations of a rela-
tively simple model with a single reactivity feedback. Despite its
simplicity, the chosen test model incurs the possibility of numerical
instabilities. This feature is crucial for the purpose of demonstrating
the stabilizing effect of the fission source. Although we may spec-
ulate that similar results may be obtained for other more compli-
cated systems, this remains to be confirmed in future studies.

We assume that the numerical instability problems of fixed-
point iteration can be observed even if the Monte Carlo solver is
substituted for a deterministic solver. While not all fully deter-
ministic coupled codes use fixed-point iteration, those that do
could possibly benefit from our conclusions. Nevertheless, deter-
ministic criticality solvers usually converge the fission source at a
very fast rate because they may implement effective source
convergence acceleration techniques. It may be challenging to
tune the number of source iterations made by the deterministic
solver so that the source will not converge fully within a single
iteration step.
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