DOI QR코드

DOI QR Code

Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark

  • 투고 : 2017.02.08
  • 심사 : 2017.04.20
  • 발행 : 2017.08.25

초록

With ever-advancing computer technology, the Monte Carlo (MC) neutron transport calculation is expanding its application area to nuclear reactor transient analysis. Dynamic MC (DMC) neutron tracking for transient analysis requires efficient algorithms for delayed neutron generation, neutron population control, and initial condition modeling. In this paper, a new MC steady-state simulation method based on time-dependent MC neutron tracking is proposed for steady-state initial condition modeling; during this process, prompt neutron sources and delayed neutron precursors for the DMC transient simulation can easily be sampled. The DMC method, including the proposed time-dependent DMC steady-state simulation method, has been implemented in McCARD and applied for two-dimensional core kinetics problems in the time-dependent neutron transport benchmark C5G7-TD. The McCARD DMC calculation results show good agreement with results of a deterministic transport analysis code, nTRACER.

키워드

참고문헌

  1. B.L. Sjenitzer, J.E. Hoogenboom, Dynamic Monte Carlo method for nuclear reactor kinetics calculations, Nucl. Sci. Eng. 175 (2013) 94-107. https://doi.org/10.13182/NSE12-44
  2. B.L. Sjenitzer, J.E. Hoogenboom, J.J. Escalante, V.S. Espinoza, Coupling of dynamic Monte Carlo with thermal-hydraulic feedback, Ann. Nucl. Energy 76 (2015) 27-39. https://doi.org/10.1016/j.anucene.2014.09.018
  3. Y.G. Jo, B. Cho, N.Z. Cho, Nuclear reactor transient analysis by continuousenergy Monte Carlo calculation based on predictor-corrector quasi-static method, Nucl. Sci. Eng. 183 (2016) 229-246. https://doi.org/10.13182/NSE15-100
  4. E.L. Kaplan, Monte Carlo Methods for Equilibrium Solutions in Neutron Multiplication, UCRL-5275-T, Lawrence Livermore National Laboratory, 1958.
  5. L.M. Petrie, N.F. Cross, KENO-V.a: an Improved Monte Carlo Criticality Program with Supergrouping, NUREG/CR-0200, Sec. Fll, ORNL/NUREG/CSD-2 vol. 2, Oak Ridge National Laboratory, 1985.
  6. J.F. Briesmeister (Ed.), MCNP-A General Monte Carlo N-Particle Transport Code, Version 4A, LA-12625, Los Alamos National Laboratory, 1993.
  7. J.T. Mihalczo, T.E. Valentine, Calculational verification and process control applications utilizing the high sensitivity of noise measurement parameters to fissile system configuration, Nucl. Sci. Eng. 121 (1995) 286-300. https://doi.org/10.13182/NSE95-A28565
  8. T.E. Valentine, J.T. Mihalczo, MCNP-DSP: a neutron and gamma ray Monte Carlo calculation of source-driven noise-measured parameters, Ann. Nucl. Energy 23 (1996) 1271-1287. https://doi.org/10.1016/0306-4549(96)00004-7
  9. U. Wiacek, E. Krynicka, Decay of the pulsed thermal neutron flux in two-zone hydrogenous systems-Monte Carlo simulations using MCNP standard data libraries, Nucl. Instrum. Methods Phys. Res. B 243 (2006) 92-98. https://doi.org/10.1016/j.nimb.2005.07.213
  10. D.E. Cullen, TART 2002: a Coupled Neutron-photon, 3-D, Combinatorial Geometry, Time Dependent Monte Carlo Transport Code, UCRL-ID-126455, Rev. 4, Lawrence Livermore National Laboratory, 2002.
  11. T.E. Booth, A Weight (Charge) Conserving Importance-weighted Comb for Monte Carlo, LA-UR-96-0051, Los Alamos National Laboratory, 1996.
  12. D.E. Cullen, C.J. Clouse, R. Procassini, R.C. Little, Static and Dynamic Criticality: Are They Different? UCRL-TR-201506, Lawrence Livermore National Laboratory, 2003.
  13. D. Brockway, P. Soran, P. Whalen, Monte Carlo ${\alpha}$ Calculation, LA-UR-85-1224, Los Alamos National Laboratory, 1985.
  14. C.H. Pyeon, Experimental Benchmarks on Thorium-loaded Accelerator-driven System at Kyoto University Critical Assembly, KURR-TR(CD)-48, Research Reactor Institute, Kyoto University, 2015.
  15. N. Shaukat, H.J. Shim, Alpha eigenvalue estimation from dynamic Monte Carlo calculation for subcritical systems, in: Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 11-13, 2016.
  16. H.J. Shim, S.H. Jang, S.M. Kang, Monte Carlo alpha iteration algorithm for a subcritical system analysis, Sci. Technol. Nucl. Ins. 2015 (2015) 859242. http://dx.doi.org/10.1155/2015/859242.
  17. H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, C.H. Kim, McCARD: Monte Carlo code for advanced reactor design and analysis, Nucl. Eng. Technol. 44 (2012) 161-176. https://doi.org/10.5516/NET.01.2012.503
  18. M. Aufiero, C. Fiorina, A. Laureau, P. Rubiolo, V. Valtavirta, Serpent-OpenFoam Coupling in transient mode: simulation of a Godiva prompt critical burst, in: Proceedings of ANS MC2015-Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, Nashville, TN, 2015.
  19. J. Lieberoth, A Monte Carlo technique to solve the static eigenvalue problem of the Boltzmann transport equation, Nukleonik 11 (1968) 213-219.
  20. V.F. Boyarinov, P.A. Fomichenko, J. Hou, K. Ivanov, A. Aures, W. Zwermann, K. Velkov, Deterministic Time-dependent Neutron Transport Benchmark without Spatial Homogenization (C5G7-TD), Version 1.6, NEA/NSC/DOC(2016), OECD Nuclear Energy Agency, 2016.
  21. Y.S. Jung, C.B. Shim, C.H. Lim, H.G. Joo, Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers, Ann. Nucl. Energy 62 (2013) 357-374. https://doi.org/10.1016/j.anucene.2013.06.031
  22. A.F. Henry, The application of reactor kinetics to the analysis of experiments, Nucl. Sci. Eng. 3 (1958) 52-70. https://doi.org/10.13182/NSE58-1
  23. A.F. Henry, Nuclear-Reactor Analysis, MIT Press, Cambridge, MA, 1975.
  24. E. Lewis, M. Smith, N. Tsoulfanidis, G. Palmiotti, T. Taiwo, R. Blomquist, Benchmark Specification for Deterministic 2-D/3-D MOX Fuel Assembly Transport Calculations without Spatial Homogenization (C5G7 MOX), NEA/NSC, 2001.

피인용 문헌

  1. Determination of an Effective Detector Position for Pulsed-Neutron-Source Alpha Measurement by Time-Dependent Monte Carlo Neutron Transport Simulations vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/2350458
  2. Estimation of time-dependent neutron transport from point source based on Monte Carlo power iteration vol.56, pp.11, 2017, https://doi.org/10.1080/00223131.2019.1633969
  3. Estimation of kinetics parameters by Monte Carlo fixed-source calculations for point kinetic analysis of accelerator-driven system vol.57, pp.2, 2020, https://doi.org/10.1080/00223131.2019.1699188
  4. Multigroup Constant Calculation with Static α-Eigenvalue Monte Carlo for Time-Dependent Neutron Transport Simulations vol.194, pp.11, 2017, https://doi.org/10.1080/00295639.2020.1743578
  5. Time-dependent Green's function generation with Monte Carlo for transient analysis of source-driven systems vol.137, pp.None, 2017, https://doi.org/10.1016/j.pnucene.2021.103744
  6. Monte Carlo simulations of the water draining experimentof Giacint critical assembly vol.164, pp.None, 2017, https://doi.org/10.1016/j.anucene.2021.108505
  7. A pure dynamic Monte Carlo code for the neutronic analysis of nuclear reactors vol.165, pp.None, 2017, https://doi.org/10.1016/j.anucene.2021.108627