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a b s t r a c t

While industry understands the importance of keeping equipment operational and well maintained, the
importance of tracking maintenance information in reliability models is often overlooked. Prognostic
models can be used to predict the failure times of critical equipment, but more often than not, these
models assume that all maintenance actions are the same or do not consider maintenance at all. This
study investigates the influence of integrating maintenance information on prognostic model prediction
accuracy. By incorporating maintenance information to develop maintenance-dependent prognostic
models, prediction accuracy was improved by more than 40% compared with traditional maintenance-
independent models. This study acts as a proof of concept, showing the importance of utilizing main-
tenance information in modern prognostics for industrial equipment.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As the industry evolves, there is an increasing reliance on data
and information that can be extracted from data, to improve
operation and equipment performance. Data science and analytics
are becoming a key area of focus for many industries and com-
panies. The emergence of online monitoring and predictive ana-
lytics has indicated the importance of accurately quantifying
system behavior, as well as using information about the health of
the system, in order to improve the way equipment is operated,
maintained, and optimized. Two of the most common data sources
for full-scale industry are process data (signals, features, and
operating constraints) and maintenance data. The availability of
these data repositories allows for condition monitoring, di-
agnostics, prognostics, etc., by developing characteristic models for
plant equipment, identification, and prediction of failure. These
prognostic models can be used to estimate system degradation and
predict when equipment will no longer operate as designed.

When developing models for prognostics, the condition of the
equipment is traditionally assumed to be restored to as good as new
condition at the end of each cycle. This assumption means that the
equipment is essentially replaced with a brand new part at the time
of maintenance. By making this assumption, any information about
residual degradation in the system is lost. Unfortunately, assuming

that all traces of degradation are removed regardless of mainte-
nance action is not regularly applicable to repairable systems. For
example, consider a generic repairable filter that accrues dust,
particulates, and other potential degradation. Industrial filters can
often be repaired in many unique ways. Large filters may consist of
multiple stages such as an outer layer filter and an inner layer filter.
Either stage of the filter can be replaced, or methods to clean the
filter so that it may be reused are potential maintenance action
options. Imagine that after 1,000 h of operations, a filter has
accrued significant degradation and is scheduled for maintenance.
In this scenario, the maintenance worker replaced the outer filter,
and the system continues to run within the acceptable operating
efficiency range. However, because only the outer filter is replaced,
degradation in the composite filtering system is present at the
beginning of the following operating cycle due to the residual
degradationwithin the inner filter. If a model was developed for the
filter system and each cycle was assumed to begin at an as good as
new condition, the predictions of subsequent failures after the
outer filter was replaced would likely be significantly inaccurate. In
order to prevent unnecessary error in failure prediction, informa-
tion about the type of maintenance conducted after each failure
would need to be known and in someway incorporated into model
development so that the initial conditions at the beginning of each
operating cycle could be correctly captured.

The focus of this study is to determine the influence of main-
tenance information on prognostic model development. In systems
where the maintenance action is captured in maintenance work
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order information, are the prognostic model prediction accuracy
and uncertainty improved by utilizing maintenance informa-
tion to increase model specificity? By developing maintenance-
independent and maintenance-specific models, the relative per-
formance of each can be compared for a system that is significantly
influenced by the type of maintenance conducted. This study is
important because it identifies the need to collect and utilize
maintenance information for accurate prognostic model develop-
ment and failure prediction.

2. Background

Interest in utilizing prognostics for failure prediction in indus-
trial equipment is quickly growing. By collecting information on
equipment failure, prognostics allows degradation to be tracked
through the life of components and can be used to accurately es-
timate the remaining useful life (RUL) of specific equipment under
the influence of degradation related to specific fault modes.

2.1. Prognostic model classification

Many different types of prognostic models are available. These
models can be classified depending on the amount of information
used to predict RUL. One way of grouping prognostic models is
presented by Coble and Hines [1], and Sharp et al. [2]. This method
groups prognostic models into three “types.” Type I prognostics is
similar to traditional reliability analysis and uses historical time-to-
failure (TTF) data to develop failure distributions for a given sys-
tem. In Type I prognostic models, predictions of TTF and RUL are
developed for average components under average conditions. Amore
specific prognostic model that considers the operating conditions of
the equipment is classified as a Type II prognostic model. These
models, such as Markov chain and proportional hazards, are used to
predict the RUL of average components under specific conditions. If
data are collected for a component through the life of the equipment,
sensor data specific to an individual component can be used to
predict RUL. Models that utilize sensor data related to equipment
degradation are classified as Type III prognostic models. These
models are used to predict RUL of specific components under specific
conditions. As condition and signal data are collected, prognostic
models can be transitioned from Type I to Type III, as shown in Fig. 1.

One common observation from experience developing these
prognostic models is that the accuracy of RUL predictions improves
as prognostic modeling is transitioned to more specific types:
availability of additional information allows for improved under-
standing of the influence that degradation has on equipment life.
This relationship between model specificity and model perfor-
mance is one of the key influences of this research. If information
leading to improved system understanding results in improved
model performance, it is expected that utilizing maintenance in-
formation to further individualize model development may result
in additional improvement to RUL prediction accuracy.

2.2. Classical maintenance

For prognostic model development, it is generally assumed
that each operating cycle begins with virtually no degradation;
however, it is also understood that systems typically undergo
different types of maintenance upon failure. Jardine and Tsang [4]
divide maintenance actions into the three major categories shown
in Fig. 2.

The assumption that all operating cycles are returned to as good
as new follows the idea of perfect repair, where cycle degradation is
completely removed upon maintenance. An older filter with sig-
nificant particulate buildup that has a major blockage within the
inlet line, which is removed upon maintenance, represents the idea
of minimal repair, where a system is returned to working condition,
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Fig. 1. Transition between prognostic model types dependent on availability of infor-
mation [3]. RUL, remaining useful life; TTF, time to failure. Fig. 2. Categories of maintenance action based on repair quality [4].
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but almost no degradation is removed from the system upon
maintenance. A broader type of maintenance is general repair,
which is used to describe a maintenance action that both returns
equipment to working condition and removes a significant amount
of degradation from the system, similar to the filter example pro-
vided in Section 1. For simplicity, these categories of repair can be
reduced to two maintenance actions: replacement, which repre-
sents a system that is returned to as good as a new condition, and
repair, which represents a system that is returned to working con-
dition but removes less degradation than replacement (as good as
used). These terms are used to represent differences between two
ambiguous categories of maintenance and do not explicitly repre-
sent systems that are given replacement parts versus parts that are
repaired. While maintenance action information is useful, the in-
fluence of maintenance actions on cycle degradation is equally
important. Maintenance-based equipment degradation typically
influences operating cycles in three ways: initial degradation levels
(postmaintenance), rate of equipment degradation, and time until
onset of degradation. The result of this influence affects degradation
paths and resulting failure times of subsequent operating cycles.

2.3. Reliability-centered maintenance versus maintenance-centered
reliability

One method of merging maintenance and reliability methods is
reliability-centered maintenance. In reliability-centered mainte-
nance, maintenance actions are chosen to satisfy a desired system
reliability or availability [5]. This is consistent with the traditional
method in which maintenance information is used within industry;
existingmaintenance datamay be used to evaluate the effectiveness
of certain maintenance actions so that reliability models can be
developed to meet availability needs. In this research, the attention
is shifted from reliability-centered maintenance to a more
maintenance-focused study. The only similar research, by Martorell
et al. [6], that has been found is related to age-dependent reliability
models. In their study, the idea of equipment age versus chrono-
logical time is discussed to highlight the effects of imperfect main-
tenance across cycles. The information is used to assess the
reliability of nuclear plants during operational life and for life
extension applications. In their study, every maintenance action is
treated as imperfect, and results in age reduction or age setback. The
result is an accelerated aging model for equipment under imperfect
repair conditions. The methods discussed within this paper differ
slightly due to the utilization of perfect and imperfect maintenance
action possibilities. Unlike thework presented byMartorell et al. [6],
this research utilizesmaintenance-dependentmodels to capture the
effects of imperfect maintenance and predict failure times for both
perfect and imperfect maintenance cycles.

3. Materials and methods

The system used for this research is a small-scale accelerated
aging test bed for a cross-flow heat exchanger shown in Fig. 3. A list
of signal names for Fig. 3 is provided in Table 1.

This system is used to generate data for a heat exchanger that
undergoes degradation through fouling. In order to accelerate the
rate of fouling, clay powder was introduced to the closed hot leg
loop. This clay accumulates along the walls of the hot leg within the
heat exchanger and reduces the heat transfer coefficient over time.
The results of early attempts to develop accurate prognostic models
for the heat-exchanger test bed are published [7]. This early work
did not attempt to develop maintenance-dependent models, and
therefore the system contains only one maintenance action, which
was to drain the heat exchanger, replace the clay watermixturewith
cleanwater, and pressure wash the walls of the heat exchanger. As a

result, few degradation runs that satisfy the needs of this research
were collected; additional data for the heat exchanger system that
undergoes two distinctive maintenance actions are, therefore,
generated from a simulation to expand upon earlier work. To relate
these maintenance actions to real work done to restore a heat
exchanger during maintenance, two possible choices are explained:
flush and clean. A flush is a simple maintenance action where high-
pressure water is forced through the heat exchanger to quickly
remove excess fouling. By contrast, a full clean uses both high-
pressure water to flush the system, and disassembly of the heat
exchanger and mechanical cleaning of the equipment's inner walls.
Flush and clean can be thought of as repair and replace, respectively.

Rather than building a simulation from scratch, previously
collected data from the heat exchanger are used to improve simi-
larities between the simulation and real data. The first step in
generating maintenance-dependent cycles is to process the real
data for each signal into distributions for the initial signal values,
degradation rate of the signal path, signal noise, TTF, and signal
value. This allows cycle parameters to be sampled from distribu-
tions representing the real data. The second step is to calculate the
heat transfer coefficient for the real data. Fouling influences heat
transfer efficiency; therefore, calculation of the heat transfer coef-
ficient should allow the degradation in heat exchanger perfor-
mance to be quantified. Equations for calculating the heat
exchanger heat transfer are as follows [8]:

LMTD ¼ ðTh1 � Tc2Þ � ðTh2 � Tc1Þ
log
�
Th1�Tc2
Th2�Tc1

� (1)
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Fig. 3. Simplified diagram of the small-scale accelerated aging heat exchanger [7].

Table 1
List of heat exchanger signals.

Signal index Signal/feature Abbreviation

1 Hot leg inlet temperature Thin
2 Hot leg outlet temperature Thout
3 Cold leg inlet temperature Tcin
4 Cold leg outlet temperature Tcout
5 Hot leg flow rate Mh
6 Cold leg flow rate Mc
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Uh=c ¼
_Qh=c

LMTD*A
(2)

where LMTD is the log-mean temperature difference; T is the
temperature for the hot leg inlet (h1), hot leg outlet (h2), cold leg
inlet (c1), and cold leg outlet (c2); Q is the heat rate; A is the surface
area of heat transfer; and U is the heat transfer coefficient. The
LMTD, heat rate, and heat transfer coefficient are referred to as
features since they are calculated from measured signal values. An
example of a calculated heat transfer coefficient from the real data
is shown in Fig. 4.

Similar to the process for the heat exchanger signals, parameters
of the heat transfer are sampled from the feature cycles and used to
develop distributions representing initial degradation, rate of
degradation, and noise level. The time before degradation onset
was not sampled due to difficulties identifying the precise point of
onset. In order to create influence of maintenance action on the
heat transfer parameters, the values sampled from the real data
heat transfer features are divided into two groups. The parameters
can then be sampled from the different groups based on the
maintenance action desired: flush or clean. After the appropriate
noise is added, the resulting maintenance-based heat transfer
features look like the example in Fig. 5.

While this process of generating maintenance-dependent heat
transfer paths could be used to develop prognostic models, the heat
transfer features may or may not accurately represent changes seen
in the temperature signals due to the fact that the heat transfer is
sampled from the distribution parameters rather than calculating
directly from the signals. To improve this process, the inlet hot and
cold leg temperatures, as well as the heat transfer coefficients, are
passed to a kernel regression model and used to predict the outlet
temperatures (Fig. 6).

The multivariate kernel model is used as an error correction
model to capture relationships between input and output data. This
heteroassociative regression model is similar to a general regres-
sion neural network [9]. General regression neural network is a
nonparametric model, which makes it flexible for a variety of uses.
Its simplicity also helps improve understanding of the differences
between model uncertainty and data uncertainty, making it
extremely useful for exploratory research involving relative model

performance. In this study, kernel regression is used to capture
relationships between predictor and response variables so that
typical equipment responses can be recreated under the influence
of equipment and signal degradation. This kernel model is trained
on the real data, and evaluated for the sampled cycles so that the
relationships between the signals are retained in the newly
generated data. Since the input temperatures are not influenced by
degradation, it makes sense to directly simulate these temperatures
and use them in the model. By doing this, the resulting outlet
temperatures also reflect the influence of maintenance action seen
in the generated heat transfer coefficient. Rather than using the
output temperatures and the simulated input temperatures to
recalculate the heat transfer coefficient and use this feature in the
prognostic model, the LMTD of the temperature signals was used.
This means that the parameter used in the prognostic model to
predict the TTF of the equipment is dependent only on the simu-
lated inlet temperatures and model outlet temperatures, and does
not require a simulated mass flow rate signal.

In order to establish when a cycle is considered “failed,” a
threshold must be applied to the LMTD of each generated cycle.
This threshold corresponds to a generalized efficiency of the heat
exchanger system under the influence of fouling degradation. For
the generated cycles, all are normalized so that the range of all
cycles is between 0 and 1; the threshold was chosen arbitrarily at a
0.45 degradation level for all cycles regardless of maintenance ac-
tion. Observations after this point are removed from the model and
assumed to have an RUL of zero. Cycles that do not reach the
threshold are treated as censored cases. The RUL is calculated as the
difference between the current observation and the predicted TTF.
An example of generated prognostic parameters (LMTD) with the
applied threshold is provided in Fig. 7.

Fig. 4. Heat transfer coefficient of the heat exchanger under the influence of fouling
degradation.

Fig. 5. Example of sampled heat transfer coefficient features.

Fig. 6. Kernel regression model for a heat exchanger system.
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In this figure, observations are designed to represent a sample
every 15 min. This means that cycle life ranges from approximately
5 days to 15 days. One observation that can be made about the
generated prognostic parameters is the amount of noise present in
the degradation paths. Since the simulated signals contain corre-
lated process noise, the prognostic parameter amplifies the noise,
resulting in large fluctuations of the LMTD feature. Since industrial
heat exchangers operate on longer maintenance cycles, these pa-
rameters can be smoothed, as it does not make physical sense for
the heat exchanger efficiency to fluctuate so rapidly for the given
time scale. The primary interest is in the underlying changes to
degradation on a macro level.

To evaluate the influence of maintenance actions on prediction
capabilities, two types of prognostic models were chosen. The first
is a Weibull model, which is a traditional reliability model
commonly used to estimate the TTF for average equipment under
average conditions and is referred to as a Type I prognostic model.
More information on Weibull models can be found in the work of
Weibull [10]. The second model used is a general path model
(GPM), which maps the degradation path of the prognostic
parameter for each cycle and attempts to quantify a general
representative path for the system based on the historic failure
cycles. This allows the GPM to predict TTF for the specific heat
exchanger equipment under specific conditions, i.e., a Type III

prognostic model. More information on the GPM and its uses in
prognostics can be found in the works of Lu and Meeker [11], and
Coble and Hines [12]. For this system, a quadratic GPM fit was used
to model the generated failure cycles. For the heat exchanger sys-
tem, Type II models are not used.

In order to fully understand how maintenance-dependent
modeling influences Type I and III prognostic model prediction
accuracy, three degradation models are developed. As a baseline,
a single degradation model is developed that does not consider
maintenance. This maintenance-independent model is used
to compare the relative prediction accuracy with that of
maintenance-dependent models. For maintenance-dependent
modeling, two models are used: one for flush actions and one
for full cleaning. Prediction accuracies are not directly compara-
ble between the maintenance action-specific models, but each
can be used to assess the prediction improvement compared with
the maintenance-independent model prediction accuracy base-
line. Since this division of modeling is used for both Type I and
Type III prognostic models, a total of six models are developed
and evaluated.

For each of the six models, half of the generated cycles are used
to train the models and the other half are used to evaluate the
prediction accuracy. As a metric for prediction accuracy, the mean
absolute error (MAE) is used. MAE is defined by Eq. (3).

MAE ¼ 1
n

Xn
i¼1

jpi � yij (3)

where p is the prediction, y is the actual value, and n is the number
of observations in the cycle being predicted. This is an average error
over each observation of the cycle. Other measures of prognostic
predictive performance can be used [13,14], but this simple mea-
sure is sufficient for this application.

4. Results

While the primary objective of the research is to identify the
influence of maintenance-dependent modeling on prognostic
model prediction accuracy, it is equally important to discuss the
results of data simulation. Comparisons of the real and simulated
data are shown for the input signals (and heat transfer features) in
Fig. 8.

The results are fairly similar when comparing the cycles
generated by sampling from real data parameter distributions with

Fig. 7. Simulated prognostic parameters with threshold at a 0.45 degradation level.

Fig. 8. Comparison of real and simulated data. (A) Real heat exchanger data. (B) Simulated data. HX, heat exchanger.
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the original dataset. The reason for differences in the relationship
between the temperature signals is the method of sampling. In the
real data, the correlation between the temperature signals is very
high; due to random sampling of the signal parameters used in the
generated data, this strong relationship between the signals is
partially lost. Data could be sampled in a correlatedmanner, but the
method used provides a conservative result.

For the results of applying the Type I Weibull model to the
datasets, multiple batches were run and aggregated into an average
prediction score. The results of the maintenance-independent and
maintenance-dependent Type I prognostic modeling are provided
in Table 2.

The average cycle length is approximately 1,000 observations;
therefore, the combined model can predict the TTF with roughly
46% prediction error. While this is typically considered as an inac-
curate model, the purpose of this research is to compare the ac-
curacy of the maintenance-independent model with that of the
maintenance-dependent models. In addition, most models see
improvement in prediction accuracy as they get closer to failure.
The models developed in this work are evaluated along the total
lifecycle; therefore, error improvement may change if compared
during specific phases of equipment life. It is important to have
higher prediction accuracy near the end of life, which should be an
area of future research for maintenance influence on prognostic
accuracy. For the flush and clean models, the prediction error is
reduced from 46% to 21% and 10%, respectively. Type I models are
prone to high uncertainty; therefore, it is typically assumed that
Type I models will not performwell for systems with large variance
in failure times. This is one of the driving motivations behind using
Type III models for more complex systems. For the heat exchanger
system, the results of applying Type III models are given in Table 3.

Again, the average cycle is approximately 1,000 observations,
resulting in a maintenance-independent model prediction error of
17%. This is significantly reduced from 46% prediction error in the
maintenance-independent Type I model. Comparing this result
with the prediction errors for maintenance-dependent models, the
flush and clean models had prediction errors of approximately 9%
and 8%, respectively. This is a reduction of more than 40% compared
with the maintenance-independent model.

5. Conclusions

The purpose of this study was to determine how the influence
of maintenance actions on system degradation influences

modeling ability to predict equipment failures. By generating
operating cycles for a heat exchanger system with two possible
maintenance actions, these cycles could be grouped according to
maintenance conducted and prognostic models were developed.
The importance of integrating maintenance information with
process data is quantified by comparing maintenance-dependent
models with a single prognostic model independent of the
maintenance conducted. By comparing models, the results of this
research show that, for this case, prognostic model prediction
accuracy can be improved by 40% or more when maintenance
action-dependent models are used. These results validate the
theory that increasing model specificity through maintenance
data assimilation may result in improvements to prognostic model
performance.
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