DOI QR코드

DOI QR Code

Elimination of Grapevine fleck virus from infected grapevines 'Kyoho' through meristem-tip culture of dormant buds

휴면아 경정 배양법을 통한 포도 '거봉' 에서 Grapevine fleck virus의 제거

  • Kim, Mi Young (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Cho, Kang Hee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Chun, Jae An (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Park, Seo Jun (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Se Hee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Han Chan (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • 김미영 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 조강희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 천재안 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 박서준 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김세희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 이한찬 (농촌진흥청 국립원예특작과학원 과수과)
  • Received : 2017.10.06
  • Accepted : 2017.11.07
  • Published : 2017.12.31

Abstract

Herein, we report the meristem-tip culture from dormant buds of grape 'Kyoho' single-infected with Grapevine fleck virus (GFkV), which is phloem-limited and transmitted by graft inoculation. We produced GFkV-free shoots without thermo- or chemotherapy using meristem-tip explants approximately 0.3 mm (73 explants) and 0.8 mm long (five explants) including shoot apical meristem, 2-5 leaf primordia, and 1-4 uncommitted primordia from dormant buds of the infected woody cuttings (stored at $4^{\circ}C$). Explants were cultured on Murashige and Skoog (MS) medium supplemented with 3% sucrose, 3.0 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-butyric acid (IBA). After 16 weeks of culture, shoot (10-mm long) regeneration frequency achieved from 0.3-mm explants was 4.1% and that obtained from 0.8-mm explants was 40.0%. Virus-free efficiency (expressed as the percentage of RT-PCR negative shoots regenerated) from 0.3- and 0.8-mm explants was 100% and 50%, respectively. Following in vitro multiplication, RT-PCR assays revealed identical results to assays of the first regenerated shoots. Our new methodological approach could be applied for eliminating other viruses in grapevines, as well as for producing virus-free plants in many other deciduous tree species, including fruit trees.

본 연구진은 세계 최초로 GFkV에 단독 감염된 포도 품종 거봉의 휴면아로부터 직접 경정 분열조직을 절취하여 배양함으로써 별도의 열처리나 화학처리 없이 GFkV가 제거된 신초 재생에 성공하였다. GFkV는 포도 식물체의 체관에만 한정적으로 존재하고 접목으로 감염되는 포도 바이러스이다. 경정조직은 $4^{\circ}C$에서 일정기간 저장된 1년생 경화가지의 휴면아로부터 0.3 mm (73 절편체)와 0.8 mm (5절편체)를 절취하였는데, 절취 부위는 생장점(apical meristem)을 포함하여 2 ~ 5개의 엽원기(leaf primordia)와 미분화 원기(uncommitted primordia) 1 ~ 4개를 포함하였다. 절취된 경정조직을 BA 3.0 mg/L와 IBA 0.1 mg/L가 혼합된 배지에 16주간 배양한 결과, 0.3 mm와 0.8 mm의 경정조직에서 각각 4.1%와 40.0%의 신초 재생률이 관찰되었고, 재생된 신초에서의 바이러스 제거율(재생된 신초수에 대한 RT-PCR negative 신초수의 백분율)은 0.3 mm의 경정조직에서는 100%를, 0.8 mm에서는 50%를 나타내었다. 신초를 증식시킨 후 감염바이러스를 다시 진단한 결과, 신초가 처음 재생되었을 때의 진단결과와 동일하였다. 휴면아로부터 분열조직을 배양하여 바이러스가 제거된 신초를 확보한 예는 세계적으로 보고된 바가 없는 것으로서, 본 연구진의 새로운 바이러스 제거방법은 향후 포도 뿐만 아니라 과수를 포함한 낙엽성 수목의 무병묘 생산에 매우 유용하게 활용될 수 있을 것이다.

Keywords

References

  1. Barlass M (1987) Elimination of stem pitting and corky bark diseases from grapevine by fragmented shoot apex culture. Ann Appl Biol 110:653-656 https://doi.org/10.1111/j.1744-7348.1987.tb04185.x
  2. Barlass M, Skene KGM, Woodham RC, Krake LR (1982) Regeneration of virus-free grapevines using in vitro apical culture. Ann Appl Biol 101:291-295 https://doi.org/10.1111/j.1744-7348.1982.tb00824.x
  3. Borroto-Fernandez EG, Sommerbauer T, Popowich E, Schartl A, Laimer M (2009) Somatic embryogenesis from anthers of the autochthonous Vitis vinifera cv. Domina leads to Arabis mosaic virus-free plants. Eur J Plant Pathol 124:171-174 https://doi.org/10.1007/s10658-008-9404-0
  4. Bota J, Cretazzo E, Montero R, Rossello J, Cifre J (2014) Grapevine fleck virus (GFkV) elimination in a selected clone of Vitis vinifera L. cv. Manto Negro and its effects on photosynthesis. J Int Sci Vigne Vin 48:11-19
  5. Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plant. Plant Cell 8:1669-1681 https://doi.org/10.1105/tpc.8.10.1669
  6. Citovsky V, Zambryski P (2000) Systemic transport of RNA in plants. Trends Plant Sci 5:52-54
  7. Cretazzo E, Padilla C, Carambula C, Hita, I, Salmeron E, Cifre J (2010a) Comparison of the effects of different virus infections on performance of three Majorcan grapevine cultivars in field conditions. Ann Appl Biol 156:1-12 https://doi.org/10.1111/j.1744-7348.2009.00355.x
  8. Cretazzo E, Tomas M, Padilla C, Rossello J, Medrano H, Padilla V, Cifre J (2010b) Incidence of virus infection in old vineyards of local grapevine varieties from Majorca: implications for clonal selection strategies. Span J Agric Res 8:409-418 https://doi.org/10.5424/sjar/2010082-1190
  9. Duran-Vila N, Juarez J, Arregui JM (1988) Production of viroid-free grapevines by shoot tip culture. Am J Enol Vitic 39:217-220
  10. Fiore N, Prodan S, Montealegre J, Aballay E, Pino AM, Zamorano A (2008) Survey of Grapevine viruses in chile. J plant pathol 90:125-130
  11. Gambino G, Gribaudo I (2010) Simultaneous detection of nine grapevine viruses by reverse transcription-polymerase chain reaction with co-amplification of a plant RNA as internal control. Virol 96:1223-1229
  12. Gambino G, Matteo DD, Gribaudo (2009) Elimination of Grapevine fanleaf virus from three Vitis vinifera cultivars by somatic embryogenesis. Eur J Plant Pathol 123:57-60 https://doi.org/10.1007/s10658-008-9342-x
  13. Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19:520-525 https://doi.org/10.1002/pca.1078
  14. Gosalvez-Bernal B, Genoves A, Navarro JA, Pallas V, Sanchez-Pina MA (2008) Distribution and pathway for phloem-dependent movement of Melon necrotic spot virus in melon plants. Mol Plant Pathol 9:447-461 https://doi.org/10.1111/j.1364-3703.2008.00474.x
  15. Gribaudo I, Gambino G, Cuozzo D, Mannini F (2006) Attempts to elimination Grapevine rupestris stem pitting-associated virus from grapevine clones. J Plant Pathol 88:293-298
  16. Guta IC, Buciumeanu EC, Visoiu E (2014) Elimination of Grapevine fleck virus by in vitro Chemotherapy. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42:115-118
  17. Habili N, Krake LR, Barlass M, Rezaian MA (1992) Evaluation of biological indexing and dsRNA analysis in grapevine virus elimination. Ann Appl Biol 121:277-283 https://doi.org/10.1111/j.1744-7348.1992.tb03440.x
  18. Hewitt WB, Goheen AC, Cory L, Luhn C (1972) Grapevine fleck disease, latent in many varieties, is transmitted by graft inoculation. Ann Phytopathol: 43-47
  19. Jo Y, Song MK, Choi H, Park JS, Lee JW, Cho WK (2017) First Report of Grapevine fleck virus and Grapevine virus E in Grapevine in Korea. Plant Dis 101:1069
  20. Kim JS, Lee SH, Choi HS, Kim MK, Kwak HR, Nam M, Chung BN (2011) Occurrence of virus diseases on major crops in 2010. Res Plant Dis 17: 334-341 https://doi.org/10.5423/RPD.2011.17.3.334
  21. Komar V, Vigne E, Demangeat G, Fuch M (2007) Beneficial effect of selective virus elimination on the performance of Vitis vinifera cv. Chardonnay. Am J Enol Vitic 58:202-210
  22. Kovacs LG, Hanami H, Fortenberry M, Kaps ML (2001) Latent infection by leafroll agent GLRaV-3 is linked to lower fruit quality in French-American hybrid grapevines Vidal blanc and St. Vincent. Am J Enol Vitic 52:254-259
  23. Kumar S, Singh L, Ferretti L, Barba M, A.Zaidi A, Hallan V (2013) Evidence of Grapevine leafroll associated virus-1-3, Grapevine fleck virus and Grapevine virus B Occurring in Himachal Pradesh, India. Indian J Virol 24:66-69 https://doi.org/10.1007/s13337-013-0129-0
  24. Maliogka VI, Skiada FG, Eleftherou EP, Katis NI (2009) Elimination of a new ampelovirus (GLRaV-Pr) and Grapevine rupestris stem pitting associated virus (GRSPaV) from two Vitis vinifera cultivars combining in vitro thermotherapy with shoot tip culture. Sci Hortic 123:280-282 https://doi.org/10.1016/j.scienta.2009.08.016
  25. Martelli GP (1993) Graft-transmissible Diseases of Grapevines. Handbook for Detection and Diagnosis. Rome: FAO Publication Division
  26. Martelli GP, Sabanadzovic S, Sabanadzovic NA, Edwards MC, Dreher T (2002) The family Tymoviridae. Arch Virol 147: 1837-1846 https://doi.org/10.1007/s007050200045
  27. Morrison JC (1991) Bud development in Vitis vinifera L. Botanical gazette 152:304-315 https://doi.org/10.1086/337894
  28. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Phyiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  29. Panattoni A, Triolo E (2010) Susceptibility of grapevine viruses to thermotherapy on in vitro collection of Kober 5BB. Sci Hortic 125:63-67 https://doi.org/10.1016/j.scienta.2010.03.001
  30. Panattoni A, Anna FD, Triolo E (2007) Antiviral activity of tiazofurin and mycophenolic acid against Grapevine leafroll-associated virus 3 in Vitis vinifera explants. Antiviral Res 73:206-211 https://doi.org/10.1016/j.antiviral.2006.10.007
  31. Poojari S, Lowery T (2016) First report and prevalence of Grapevine fleck virus in Grapevines (Vitis vinifera) in Canada. Plant dis 100:1028-1032
  32. Skiada FG, Grigoriadou K, Maliogka VI, Katis, NI, Eleftheriou EP (2009) Elimination of Grapevine leafroll-associated virus 1 and Grapevine rupestris stem pitting-associated virus from grapevine cv. Agiorgitiko, and a micropropagation protocol for mass production of virus-free plantlets. J Plant Pathol 91:177-184
  33. Skiada FG, Maliogka VI, Katis NI, Elefthriou EP (2013) Elimination of Grapevine rupestris stem pitting-associated virus (GRSPaV) from two Vitis nivifera cultivars by in vitro chemotherapy. Eur J Plant Pathol 135:407-414 https://doi.org/10.1007/s10658-012-0097-z
  34. Valero M, Ibanez A, Morte A (2003) Effects of high vineyard temperatures on the Grapevine leafroll associated virus elimination from Vitis vinifera L. cv. Napoleon tissue cultures. Sci Hortic 97:289-296 https://doi.org/10.1016/S0304-4238(02)00212-1
  35. Vasconcelos MC, Greven M, Winefield CS, Trought MC, Raw V (2009) The flowering process of Vitis vinifera: A Review. Am J Enol Vitic 60:411-434
  36. Vivier MA, Pretorius IS (2002) Genetically tailored grapevines for the wine industry. Trends Biotechnol 20:472-478 https://doi.org/10.1016/S0167-7799(02)02058-9
  37. Wang Q, Mawassi M, Li P, Gafny R, Sela I Tamme E (2003) Elimination of grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci 165:321-327 https://doi.org/10.1016/S0168-9452(03)00091-8
  38. Youssef SA, Al-Dhaher MMA, Shalaby AA (2009) Elimination of Grapevine fanleaf virus (GFLV) and Grapevine leaf roll-associated virus-1 (GLRaV-1) from infected grapevine plants using meristem tip culture. Int J Virol 5:89-99 https://doi.org/10.3923/ijv.2009.89.99
  39. Yun HK, Park KS (2007) Grape and grapevine rootstock breeding program in Korea. Int J Plant Breeding 1:22-26