DOI QR코드

DOI QR Code

RNA-Seq data를 이용한 사과 과육색 판별 SNP 분자표지 개발

Development of SNP markers for the identification of apple flesh color based on RNA-Seq data

  • 김세희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 박서준 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 조강희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 이한찬 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 이정우 (농촌진흥청 국립원예특작과학원 인삼과) ;
  • 최인명 (농촌진흥청 국립원예특작과학원 과수과)
  • Kim, Se Hee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Park, Seo Jun (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Cho, Kang Hee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Han Chan (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Jung Woo (Ginseng Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Choi, In Myung (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • 투고 : 2017.10.21
  • 심사 : 2017.11.01
  • 발행 : 2017.12.31

초록

과육색이 다르게 발현되는 사과(Malus domestica L.) 품종의 유전자 발현을 비교하기 위해 2개의 cDNA library를 제작하였다. 붉은 색 과육 품종인 'Redfield'와 백색 과육 품종인 'Granny Smith'의 유전자 발현 차이를 보기 위해 차세대 염기서열 분석(NGS) 기술을 사용하였고 두 품종으로부터 얻은 EST의 염기서열을 결정하고 기존에 보고된 유전자와의 상동성을 분석하였다. HRM 기술은 붉은 색 과육 품종 사과와 백색 과육 품종 사과의 짧은 PCR 증폭산물에서 한 개의 서로 다른 염기서열을 구분하여 분리해낼 수 있다. 'Redfield'와 'Granny Smith'의 EST database로부터 103쌍의 단일염기다형성(SNP) 분자표지를 선발하였고, 붉은 색 과육 품종 10개와 백색 과육 품종 11개를 구분할 수 있는 SNP 분자표지를 HRM 방법으로 분석하였다. 본 연구에서는 사과 EST database를 기반으로 HRM 분석 방법을 이용하여 사과 품종의 적육계와 백육계를 구분할 수 있는 효율적인 SNP 분자표지를 개발하였다. 이러한 SNP 분자표지는 사과육종에 유용하게 사용할 수 있으며 사과 품종의 다양한 색 변화에 관한 분자 기작 연구에 좋은 참고자료가 될 수 있을 것이다.

For comparison of the transcription profiles in apple (Malus domestica L.) cultivars differing in flesh color expression, two cDNA libraries were constructed. Differences in gene expression between red flesh apple cultivar, 'Redfield' and white flesh apple cultivar, 'Granny Smith' were investigated by next-generation sequencing (NGS). Expressed sequence tag (EST) of clones from the red flesh apple cultivar and white flesh apple cultivar were selected for nucleotide sequence determination and homology searches. High resolution melting (HRM) technique measures temperature induced strand separation of short PCR amplicons, and is able to detect variation as small as one base difference between red flesh apple cultivars and white flesh apple cultivars. We applied high resolution melting (HRM) analysis to discover single nucleotide polymorphisms (SNP) based on the predicted SNP information derived from the apple EST database. All 103 pairs of SNPs were discriminated, and the HRM profiles of amplicons were established. Putative SNPs were screened from the apple EST contigs by HRM analysis displayed specific difference between 10 red flesh apple cultivars and 11 white flesh apple cultivars. In this study, we report an efficient method to develop SNP markers from an EST database with HRM analysis in apple. These SNP markers could be useful for apple marker assisted breeding and provide a good reference for relevant research on molecular mechanisms of color variation in apple cultivars.

키워드

참고문헌

  1. Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99-102. doi: 10.1016/j.tplants.2007.11.012
  2. Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48(7):958-970 https://doi.org/10.1093/pcp/pcm066
  3. Chagne D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8:212 doi: 10.1186/1471-2164/8/212
  4. Cheng F, Weeden N, Brown S (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Genet 93:222-227 https://doi.org/10.1007/BF00225749
  5. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal 49:414-427 https://doi.org/10.1111/j.1365-313X.2006.02964.x
  6. Floss DS, Walter MH (2009) Role of carotinoid cleavage dioxygenase1 (CCD1) in apocarotenoid biogenesis revisited. Plant Signal Behav 4(3):172-175 https://doi.org/10.4161/psb.4.3.7840
  7. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin in Biotech 12:155-160 https://doi.org/10.1016/S0958-1669(00)00192-0
  8. Kim JH, Song KJ (2010) Current status and outlook on genetic transformation of fruit trees in Korea. Journal of Plant Biotech 37(4):408-413 https://doi.org/10.5010/JPB.2010.37.4.408
  9. Kim JI, Kwon SI, Kim MJ, Jun JH, Heo S, Kim SH, Cho KH (2011) High-resolution melting analysis for fruit color identification using SNP markers in apple. Kor J Hort Sci Tech 29 (suppl. I):49
  10. Kim SH, Cho KH, Park SJ, Kim DH, Choi IM (2015) Transcriptome analysis between red flesh apple cultivar and white flesh apple cultivar using next generation sequencing. Fruit Sci and Tech In Korea 1:111-116
  11. Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, Feldblyum TV, Buell CR, Ketchum KA, Lee J, Ronning CM, Koo HL, Moffat KS, Cronin LA, Shen M, Pai G, Van Aken S, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Smerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC (1999) Sequence and analysis of chromosome 2 of the plant Aradidopsis thaliana. Nature 402(6763):761-768 https://doi.org/10.1038/45471
  12. Markussen T, Kruger J, Schmidt H, Dunemann F (1995) Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pl 1 from Malus robusta in cultivated apple. Plant Breeding 114:530-534 https://doi.org/10.1111/j.1439-0523.1995.tb00850.x
  13. Noguchi T, Hayashi S (1981) Plant leaf alanine: 2-oxoglutarate aminotransferase. Peroxisomal localization and identity with glutamate:glyoxylate aminotransferase. Biochem J 195(1):235-239 https://doi.org/10.1042/bj1950235
  14. Prince JP, Zhang Y, Radwanski ER, Kyle MM (1997) A versatile and high-yielding protocol for the preparation of genomic DNA from Capsicum spp. (pepper). Hortscience 32:937-939
  15. Sassa H, Mase N, Hirano H, Ikehashi H (1994) Identification of self-incompatibility-related glycoproteins in styles of apple (Malus$\times$domestica). Theor Appl Genet 89:201-205
  16. Shujun C, Jeff P, John C (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11(2): 113-116 https://doi.org/10.1007/BF02670468
  17. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clinic Chem 49:853-860 https://doi.org/10.1373/49.6.853
  18. Yang H, Kruger J (1994) Identification of a RAPD marker linked to the Vf gene for scab resistance in apple. Euphytica 77:83-87 https://doi.org/10.1007/BF02551466
  19. Yanmin Z, Kate E, Cameron P (2011) Utility testing of an apple skin color MdMYB1 marker in two progenies. Mol Breeding 27: 525-532 https://doi.org/10.1007/s11032-010-9449-6