DOI QR코드

DOI QR Code

Gene structure and expression characteristics of liver-expressed antimicrobial peptide-2 isoforms in mud loach (Misgurnus mizolepis, Cypriniformes)

  • Lee, Sang Yoon (Department of Marine Bio-Materials and Aquaculture, Pukyong National University) ;
  • Nam, Yoon Kwon (Department of Marine Bio-Materials and Aquaculture, Pukyong National University)
  • Received : 2017.08.20
  • Accepted : 2017.10.31
  • Published : 2017.12.31

Abstract

Background: Liver-expressed antimicrobial peptide-2 (LEAP-2) is an important component of innate immune system in teleosts. In order to understand isoform-specific involvement and regulation of LEAP-2 genes in mud loach (Misgurnus mizolepis, Cypriniformes), a commercially important food fish, this study was aimed to characterize gene structure and expression characteristics of two paralog LEAP-2 isoforms. Results: Mud loach LEAP-2 isoforms (LEAP-2A and LEAP-2B) showed conserved features in the core structure of mature peptides characterized by four Cys residues to form two disulfide bonds. The two paralog isoforms represented a tripartite genomic organization, known as a common structure of vertebrate LEAP-2 genes. Bioinformatic analysis predicted various transcription factor binding motifs in the 5'-flanking regions of mud loach LEAP-2 genes with regard to development and immune response. Mud loach LEAP-2A and LEAP-2B isoforms exhibited different tissue expression patterns and were developmentally regulated. Both isoforms are rapidly modulated toward upregulation during bacterial challenge in an isoform and/or tissue-dependent fashion. Conclusion: Both LEAP-2 isoforms play protective roles not only in embryonic and larval development but also in early immune response to bacterial invasion in mud loach. The regulation pattern of the two isoform genes under basal and stimulated conditions would be isoform-specific, suggestive of a certain degree of functional divergence between isoforms in innate immune system in this species.

Keywords

References

  1. Bao B, Peatman E, Xu P, Li P, Zeng H, He C, Liu Z. The catfish liver-expressed antimicrobial peptide 2 (LEAP-2) gene is expressed in a wide range of tissues and developmentally regulated. Mol Immunol. 2006;43:367-77. https://doi.org/10.1016/j.molimm.2005.02.014
  2. Beck F, Stringer E. The role of Cdx genes in the gut and in axial development. Biochm Soc Trans. 2010;38:353-7. https://doi.org/10.1042/BST0380353
  3. Boweles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 2000;227:239-55. https://doi.org/10.1006/dbio.2000.9883
  4. Broekman DC, Frei DM, Gylfason GA, Steinarsson A, Jornvall H, Agerberth B, Gudmundsson GH, Maier VH. Cod cathelicidin: isolation of mature peptide, cleavage site characterization and developmental expression. Dev Comp Immunol. 2011;35:296-303. https://doi.org/10.1016/j.dci.2010.10.002
  5. Budi EH, Duan D, Derynck R. Transforming growth factor-${\beta}$ receptors and smads: regulatory complexity and functional versatility. Trends Cell Biol. 2017;27:658-72. https://doi.org/10.1016/j.tcb.2017.04.005
  6. Chen J, Chen Q, Lu XJ, Chen J. The protection effect of LEAP-2 on the mudskipper (Boleophthalmus pectinirostris) against Edwardsiella tarda infection is associated with its immunomodulatory activity on monocytes/macrophages. Fish Shellfish Immunol. 2016;59:66-76. https://doi.org/10.1016/j.fsi.2016.10.028
  7. Cho YS, Lee SY, Kim KH, Kim SK, Kim DS, Nam YK. Gene structure and differential modulation of multiple rockbream (Oplegnathus fasciatus) hepcidin isoforms resulting from different biological stimulations. Dev Comp Immunol. 2009;33:46-58. https://doi.org/10.1016/j.dci.2008.07.009
  8. Fujimoto T, Kataoka T, Sakao S, Saito T, Yamaha E, Arai K. Developmental stages and germ cell lineage of the loach (Misgurnus anguillicaudatus). Zool Sci. 2006;23:977-89. https://doi.org/10.2108/zsj.23.977
  9. Glasuer SMK, Neuhauss SCF. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Gen Genomics. 2014;289:1045-60. https://doi.org/10.1007/s00438-014-0889-2
  10. Hancock RE, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol. 2016;16:321-34. https://doi.org/10.1038/nri.2016.29
  11. Henriques ST, Tan CC, Craik DJ, Clark RJ. Structural and functional analysis of human liver-expressed antimicrobial peptide 2. Chembiochem. 2010;11:2148-57. https://doi.org/10.1002/cbic.201000400
  12. Katzenback BA. Antimicrobial peptides as mediators of innate immunity in teleosts. Biology. 2015;4:607-39. https://doi.org/10.3390/biology4040607
  13. Kim DS, Jo JY, Lee TY. Induction of triploidy in mud loach (Misgurnus mizolepis) and its effect on gonad development and growth. Aquaculture. 1994;120:263-70. https://doi.org/10.1016/0044-8486(94)90083-3
  14. Kim YU, Park YS, Kim DS. Development of eggs, larvae and juveniles of loach Misgurnus mizolepis Gunther. Bull Kor Fish Soc. 1987;20:16-23.
  15. Krause A, Sillard R, Kleemeier B, Kluver E, Maronde E, Conejo-Garcia JR, et al. Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver. Protein Sci. 2003;12:143-52. https://doi.org/10.1110/ps.0213603
  16. Lee SY, Nam YK. Isolation of novel hepcidin isoforms from the rockbream Oplegnathus fasciatus (Perciforomes). Fish Aquat Sci. 2011;14:31-42.
  17. Li HX, Lu XJ, Li CH, Chen J. Molecular characterization and functional analysis of two distinct liver-expressed antimicrobial peptide 2 (LEAP-2) genes in large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol. 2014;38:330-9. https://doi.org/10.1016/j.fsi.2014.04.004
  18. Li HX, Lu XJ, Li CH, Chen J. Molecular characterization of the liver-expressed antimicrobial peptide 2 (LEAP-2) in a teleost fish, Plecoglossus altivelis: antimicrobial activity and molecular mechanism. Mol Immunol. 2015;65:406-15. https://doi.org/10.1016/j.molimm.2015.02.022
  19. Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides. 2012;37:207-15. https://doi.org/10.1016/j.peptides.2012.07.001
  20. Li Z, Hong WS, Qiu HT, Zhang YT, Yang MS, You XX, Chen SX. Cloning and expression of two hepcidin genes in the mudskipper (Boleophthalmus pectinirostris) provides insights into their roles in male reproductive immunity. Fish Shellfish Immunol. 2016;56:239-47. https://doi.org/10.1016/j.fsi.2016.07.025
  21. Liang T, Ji W, Zhang GR, Wei KJ, Feng K, Wang WM, Zou GW. Molecular cloning and expression analysis of liver-expressed antimicrobial peptide 1 (LEAP-1) and LEAP-2 genes in the blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2013;35:553-63. https://doi.org/10.1016/j.fsi.2013.05.021
  22. Liu F, Li JL, Yue GH, Fu JJ, Zhou ZF. Molecular cloning and expression analysis of the liver-expressed antimicrobial peptide 2 (LEAP-2) gene in grass carp. Vet Immunol Immunopathol. 2010;133:133-43. https://doi.org/10.1016/j.vetimm.2009.07.014
  23. Liu T, Gao Y, Wang R, Xu T. Characterization, evolution and functional analysis of the liver-expressed antimicrobial peptide 2 (LEAP-2) gene in miiuy croaker. Fish Shellfish Immunol. 2014;41:191-9. https://doi.org/10.1016/j.fsi.2014.08.010
  24. Magnadottir B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006;20:137-51. https://doi.org/10.1016/j.fsi.2004.09.006
  25. Matsumoto N, Jubo A, Liu H, Akita K, Laub F, Ramirez F, Keller G, Friedman SL. Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Blood. 2006;107:1357-65. https://doi.org/10.1182/blood-2005-05-1916
  26. Nam BH, Moon JY, Kim YO, Kong HJ, Kim WJ, Lee SJ, Kim KK. Multiple ${\beta}$-defensin isoforms identified in early developmental stages of the teleost Paralichthys olivaceus. Fish Shellfish Immunol. 2010;28:267-74. https://doi.org/10.1016/j.fsi.2009.11.004
  27. Nam YK, Cho YS, Lee SY, Kim BS, Kim DS. Molecular characterization of hepcidin gene from mud loach (Misgurnus mizolepis; Cypriniformes). Fish Shellfish Immunol. 2011;31:1251-8. https://doi.org/10.1016/j.fsi.2011.09.007
  28. Nam YK, Noh JK, Cho YS, Cho HJ, Cho KN, Kim CG, Kim DS. Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis. Transgenic Res. 2001;10:353-62. https://doi.org/10.1023/A:1016696104185
  29. Padhi A, Verghese B. Evidence for positive Darwinian selection on the hepcidin gene of perciform and pleuronectiform fishes. Mol Divers. 2007;11:119-30. https://doi.org/10.1007/s11030-007-9066-4
  30. Panganiban G, Rubenstein JLR. Developmental function of the Distal-less/Dlx homeobox genes. Development. 2002;129:4371-86.
  31. Ren G, Shen WY, Li WF, Zhu YR. Molecular characterization and expression pattern of a liver-expressed antimicrobial peptide 2 (LEAP-2) gene in yellow catfish (Pelteobagrus fulvidraco). J Aquacult Res Dev. 2014;5:229.
  32. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101-8. https://doi.org/10.1038/nprot.2008.73
  33. Townes CL, Michailidis G, Hall J. The interaction of the antimicrobial peptide cLEAP-2 and the bacterial membrane. Biochem Biophys Res Commun. 2009;387:500-3. https://doi.org/10.1016/j.bbrc.2009.07.046
  34. Truksa J, Lee P, Beutler E. Two BMP responsive elements, STAT, and bZIP/HNF4/COUP motifs of the hepcidin promoter are critical for BMP, SMAD1, and HJV responsiveness. Blood. 2009;113:688-95. https://doi.org/10.1182/blood-2008-05-160184
  35. Yang G, Guo H, Li H, Shan S, Zhang X, Rombout JHWM, An L. Molecular characterization of LEAP-2 cDNA in common carp (Cyprinus carpio L.) and the differential expression upon a Vibrio anguillarum stimulus: indications for a significant immune role in skin. Fish Shellfish Immunol. 2014;37:22-9. https://doi.org/10.1016/j.fsi.2014.01.004
  36. Yang M, Wang KJ, Chen JH, Qu HD, Li SJ. Genomic organization and tissue specific expression analysis of hepcidin-like genes from black porgy (Acanthopagrus schlegelii B). Fish Shellfish Immunol. 2007;23:1060-71. https://doi.org/10.1016/j.fsi.2007.04.011
  37. Zhang YA, Zou J, Chang CI, Secombes CJ. Discovery and characterization of two types of liver-expressed antimicrobial peptide 2 (LEAP-2) genes in rainbow trout. Vet Immunol Immunopathol. 2004;101:259-69. https://doi.org/10.1016/j.vetimm.2004.05.005

Cited by

  1. Dietary supplementation of Streptococcus faecalis benefits the feed utilization, antioxidant capability, innate immunity, and disease resistance of blunt snout bream (Megalobrama amblycephala) vol.45, pp.2, 2017, https://doi.org/10.1007/s10695-018-0595-9
  2. Expression and antimicrobial activity of liver-expressed antimicrobial peptides in the ovaries of the viviparous teleost Xenotoca eiseni vol.118, pp.None, 2017, https://doi.org/10.1016/j.fsi.2021.09.029