DOI QR코드

DOI QR Code

Application of the Extended Grunwald-Winstein Equation to the Solvolyses of 4-(Chlorosulfonyl)biphenyl

  • Kang, Suk Jin (Department of Science Education, Jeonju National University of Education) ;
  • Koh, Han Joong (Department of Science Education, Jeonju National University of Education)
  • Received : 2016.10.18
  • Accepted : 2016.12.03
  • Published : 2017.02.20

Abstract

Solvolyses with the reaction center being the sulfur of 4-(chlorosulfonyl)biphenyl ($C_6H_5C_6H_4SO_2Cl$, 1) was studied under solvolytic conditions and the extended Grunwald-Winstein equation was applied. The thirty five kinds of solvents gave a reasonable extended Grunwald-Winstein plot with a correlation coefficient (R) of 0.940. The sensitivity values (l = 0.60 and m = 0.47) of 1 were smaller than those obtained for benzenesulfonyl chloride ($C_6H_5SO_2Cl$, 2; l = 1.10 and m = 0.61) proposed to undergo dissociative $S_N2$ mechanism. These l and m values for the solvolyses of 1 can be considered to support a $S_N2$ pathway with some ionization reaction. The activation parameters, ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$, were determined and they are also in line with values expected for a bimolecular reaction. The kinetic solvent isotope effect (KSIE) of 1.26 is also in accord with a bimolecular mechanism, probably assisted by general-base catalysis.

Keywords

References

  1. (a) Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  2. (b) Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  3. (a) Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1957, 79, 1579. https://doi.org/10.1021/ja01564a015
  4. (b) Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1957, 79, 1602. https://doi.org/10.1021/ja01564a022
  5. (a) Kevill, D. N.; Lin, G. M. L. J. Am. Chem. Soc. 1979, 101, 3916. https://doi.org/10.1021/ja00508a032
  6. (b) Kevill, D. N.; Anderson, S. W. J. Am. Chem. Soc. 1986, 108, 1579. https://doi.org/10.1021/ja00267a030
  7. (a) Kevill, D. N. In Advances in Quantitative Structure-Property Relationships, Vol. 4; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; pp. 81-115.
  8. (b) Kevill, N. D.; D'Souza, M. J. Collect. Czech. Chem. Commun. 1999, 64, 1790. https://doi.org/10.1135/cccc19991790
  9. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121.
  10. (a) Swain, C. G.; Langsdorf, W. P. J. Am. Chem. Soc. 1951, 73, 2813. https://doi.org/10.1021/ja01150a113
  11. (b) Jenkins, F. E.; Hambly, A. N. Austral. J. Chem. 1961, 14, 205. https://doi.org/10.1071/CH9610205
  12. (a) Jr. Hall, H. K. J. Am. Chem. Soc. 1956, 78, 1450. https://doi.org/10.1021/ja01588a048
  13. (b) Jr. Hall, H. K.; Lucck, C. H. J. Org. Chem. 1963, 28, 2818. https://doi.org/10.1021/jo01045a080
  14. (c) Ko, E. C. F.; Robertson, R. E. J. Am. Chem. Soc. 1972, 94, 573. https://doi.org/10.1021/ja00757a041
  15. (a) Rogne, O. J. Chem. Soc, B. 1969, 663.
  16. (b) Lee, B. C.; Lee, I. J. Korean Chem. Soc. 1980, 24, 342.
  17. (a) Kim, S. R.; Choi, H. J.; Park, J. K.; Koo, I. S.; Koh, H. J. Bull. Korean Chem. Soc. 2014, 35, 51. https://doi.org/10.5012/bkcs.2014.35.1.51
  18. (b) Ingold, C. K. Structure and Mechanism in Organic Chemistry, 2d ed.; Cornell University Press: Ithaca, N. Y., 1969; pp. 427-457.
  19. (a) Lee, S. H.; Rhu, C. J.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2007, 28, 657. https://doi.org/10.5012/bkcs.2007.28.4.657
  20. (b) Koh, H. J.; Kang, S. J.; Kevill, D. N. Bull. Korean Chem. Soc. 2009, 30, 383. https://doi.org/10.5012/bkcs.2009.30.2.383
  21. (c) Seong, M. H.; Choi, S. H.; Lee, Y. W.; Kyong, J. B.; Kim, D. K. Bull. Korean Chem. Soc. 2009, 30, 3408.
  22. (d) Seong, M. H.; Kyong, J. B.; Lee, Y. H.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 929. https://doi.org/10.3390/ijms10030929
  23. (a) Lee, Y. W.; Seong, M. H.; Kyong, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2010, 31, 3366. https://doi.org/10.5012/bkcs.2010.31.11.3366
  24. (b) Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  25. (c) Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2011, 32, 1897. https://doi.org/10.5012/bkcs.2011.32.6.1897
  26. (a) Kevill, D. N.; Kamil, W. A. J. Org. Chem. 1982, 47, 3785. https://doi.org/10.1021/jo00140a046
  27. (b) Kaspi, J.; Rappoport, Z. J. J. Am. Chem. Soc. 1980, 102, 3829. https://doi.org/10.1021/ja00531a027
  28. Koh, H. J.; Kang, S. J.; Kim, C. J. J. Bull. Korean Chem. Soc. 2009, 30, 378. https://doi.org/10.5012/bkcs.2009.30.2.378
  29. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  30. D'Souza, M. J.; Reed, D. N.; Erdman, K. J.; Kyong, J. B.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 862. https://doi.org/10.3390/ijms10030862
  31. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2011, 32, 3799. https://doi.org/10.5012/bkcs.2011.32.10.3799